
Volume 4, No. 10, September-October 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 12

ISSN No. 0976-5697

Model Checking of E-Commerce Protocol using Casper FDR
Dantuluri Sravanthi

Computer Science Engineering
Shri Vishnu Engineering College for Women

Bhimavaram, India
sravanthi.kvkr@gmail.com

K V Krishnam Raju
Computer Science Engineering

SRKR Engineering College
Bhimavaram,India

kvkraju.srkr@gmail.com

Abstract: In present days the popularity of electronic commerce applications are motivated the development of new e-commerce protocols. By
using these new protocols the secrecy and agreement properties are achieved. This paper mainly focuses on how to model the e-commerce
protocol in CSP using SPL and verified using CasperFDR whether the protocol satisfies the properties specified. Attacks are identified in this
version. The specifications through which these attacks are found are presented.

Keywords: Model Checking, E-Commerce Protocol, CSP, SPL, CasperFDR

I. INTRODUCTION

The rising popularity of the WWW (world wide web)
has resulted in an increased interest in e-commerce.
Therefore a number of e-commerce protocols have been
proposed. Most of these protocols ensure that the
information that is exchanged between the parties involved
in the e-commerce is protected from unauthorized disclosure
and modification. In this paper we address the problems of e
-commerce protocol verification using CasperFDR. In
particular, we use model checking [1, 2, 3] to secrecy and
agreement properties of the secure e-commerce protocol
proposed in [4].

Modeling and analysis of security protocols with
Communicating Sequential Process (CSP) and Failure
Divergence Refinement (FDR) have been proven to be
effective and have helped the research community find
attacks in several protocols. Lowe thus designed Casper [5],
which takes more abstract descriptions of protocols as input
and translates them into CSP. CSP was first described by
Hoare in [6] [7], and has been applied in many fields.

First, we formally model the protocol in SPL (Protocol
Specification Language) and analyze the protocol with
CasperFDR. Next, we use CasperFDR to show that there are
no other known attacks on E-Commerce protocol.

The rest of the paper is organized as follows. Section
II deals with related work. In Section III, e-commerce
protocol is modeled with CasperFDR and is analyzed and
finally we conclude in Section IV.

II. RELATED WORK

Lowe [8, 9, 10] have used the FDR model checker to
find attacks on cryptographic protocols. Roscoe et al. [11]
have used the FDR model checker together with data
independence techniques to prove that some security
protocols are free from attacks.

Heintze et al. [12] focus on the non-security aspects of
e-commerce protocols and use the FDR model checker to
verify the money and goods atomicity properties of two e-
commerce protocols NetBill [13, 14] and Digicash [15].
Heintze et al assume that neither the NetBill server nor the

communication links to the NetBill server ever fail. The
authors substantiate this assumption by arguing that banks
(the NetBill server provides the services of a financial
institution in this work) provide fail-safe service to
customers and, in the worst case, communication with the
bank can be made possible using hand-delivery.

III. PROTOCOL SPECIFICATION LANGUAGE

Before discussing the proposed model, it is helpful to
know how to specify a protocol in specification language. In
protocol engineering, a protocol is specified by the services
to be provided, assumptions about the environment,
vocabulary of the messages used, encoding (format) of each
message, and the procedure rules for consistency of message
exchanges. We have taken Needham-Schroeder Public Key
protocol as an example for this section and discussed the
protocol in the following sub sections.

a. A → B: A,B,{na,A}PK(B)
b. B → A: B,A,{na, nb}PK(A)
c. A → B: A,B,{nb}PK(B)

A. Protocol Description:

The protocol is specified as sequence of messages
exchanged between the communication parties. The notation
used is similar to the standard method of describing
protocols. In order to represent the protocol, we use the
notation {m}{k} for message m encrypted with key k. Thus
the three messages in Needham-Schroeder public key
Protocol can be represented by:

a. A -> B: {na, A}{PK(B)}
b. B -> A: {na, nb}{PK(A)}
c. A -> B: {nb}{PK(B)}
We also need some way of representing starting point

of the protocol. We assume that the run is initiated by A
receiving some message from a user, or the environment,
including B’s identity. We represent this by an extra
message in the protocol description.
0. -> A: A, B

The absence of a sender field in the above line
represents that this message is sent by the environment. The
complete protocol description then takes the form:
#Protocol description

Dantuluri Sravanthi , International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 12-16

© 2010, IJARCS All Rights Reserved 13

0. -> A: B
a. A -> B: {na, A}{PK(B)}
b. B -> A: {na, nb}{PK(A)}
c. A -> B: {nb}{PK(B)}

B. Free Variables :

The variables and their types and the functions that are
used in the protocol definition are defined under #Free
variables section. For Needham-Schroeder authentication
protocol the free variables are defined as follows.
#Free variables
A, B : Agent
na, nb : Nonce
PK : Agent -> PublicKey
SK : Agent -> SecretKey

In above example the variables na and nb should be
taken to be of type Nonce. The functions PK and SK return
an agent’s public key and secret key, respectively. We term
these “free variables” because they will be instantiated with
actual values when an actual system running the protocol.
Under the free variables section only we also define which
keys are inverses to other keys.
InverseKeys = (PK, SK)

The above line means that the functions PK and SK,
when applied to the same identity, return keys that are
inverses of each other; so for every agent A, PK(A) (A’s
public key) and SK(A) (A’s secret key) are inverses of one
another.

C. Processes:

Each agent running in the system will be represented by
a CSP process under processes section. For Needham-
Schroeder authentication protocol the processes section is
defined below.
#Processes
INITIATOR(A,na) knows PK, SK(A)
RESPONDER(B,nb) knows PK, SK(B)

These lines give names to the roles played by the
different agents (here INITIATOR and RESPONDER). The
parameters and the variables following the keyword
“knows” define the knowledge that the agent in question is
expected to have at the beginning of the protocol run. For
example, the initiator A is expected to know his own
identity A, the nonce na, the public key function PK (i.e. he
can look up public keys in some table), and his own secret
key SK(A).

D. Specifications:

The requirements of the protocol are specified under
#Specification section For Needham-Schroeder
authentication protocol the specification section is defined
as below.
#Specification
Secret(A, na, [B])
Secret(B, nb, [A])
Agreement(A,B,[na,nb])
Agreement(B,A,[na,nb])

In above example the lines starting with Secret specify
that certain data items should be secret. The first secret
specification Secret(A,na,[B]) specifies that A thinks that
na is a secret that can be known to only himself and B.
However, this line will cause a CSP specification to be
generated with the meaning: if A runs the protocol with B,

and B is not the intruder, then the intruder will never learn
the value of na.

The lines starting with Agreement are authentication
specifications. The first authentication specification
Agreement(A,B,[na,nb]) specifies that A is correctly
authenticated to B, and the two agents agree on the data
values na and nb.

E. The System Definition:

The system definition contains following sections.

a. Type Definitions:

The types of variables to be used in the actual system to
be checked are defined in a similar way to the types of the
free variables under Actual variables section. For Needham-
Schroeder authentication protocol the Actual variables
section is defined as below.
#Actual variables
Alice, Bob, Mallory : Agent
Na, Nb, Nm : Nonce

According to above example the system dealing with
three agents (Mallory will be the intruder), and three
nonce’s. The public and secret keys of these agents are
defined in the #Functions section, below.

We use the convention that free variables representing
agents are denoted by a single capital letter (A, B, etc.)
while actual variables representing agents are denoted by
real names (Alice, Bob, etc.). Similarly, free variables
representing other data items are denoted by small letters
(e.g. na) while the corresponding actual values are denoted
by identifiers starting capital letter (e.g. Na).

b. Functions:

The functions that are used by the agents in the protocol
description have to be defined under the #Functions section.
For Needham-Schroeder authentication protocol the
Functions section is defined as below.
#Functions
symbolic PK, SK

The above lines represent that the functions PK (which
returns an agent’s public key) and SK (which returns an
agent’s secret key) to be symbolic: this means that Casper
produces its own values to represent the results of function
applications.

c. System definition:

 The system definition section represents which agents
should be present in the system to be checked. For
Needham-Schroeder authentication protocol the System
section is defined as below.
#System
INITIATOR(Alice, Na)
RESPONDER(Bob, Nb)

From the above lines we consider a system with a single
initiator, Alice (taking the role of A in the protocol
description), and a single responder, Bob, they use nonce’s
Na and Nb. The types of the parameters of the processes
should match the types of the parameters of the
corresponding processes defined under the #Processes
section.

d. The intruder:

Finally, the intruder section defines the operation of the
intruder is specified by giving his identity, and the set of

Dantuluri Sravanthi , International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 12-16

© 2010, IJARCS All Rights Reserved 14

data values that he knows initially. For Needham-Schroeder
authentication protocol the Intruder Information section is
defined as below.
#Intruder Information
Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Mallory, Nm, PK,
SK(Mallory)}

The above example defines that the intruder’s identity
to be Mallory and initially knows all the agents’ identities, a
single nonce Nm, the public key function PK, and his own
secret key SK. The inclusion of the function PK in the
intruder’s knowledge means that the intruder knows the
public key information of all agents.

IV. MODELING AND ANALYSIS OF E-COMMERCE

PROTOCOL

A. E-Commerce Protocol Structure:

a. TP->C : download of product encrypted with key
K1

b. C->M : purchase order
c. M->C : product encrypted with a second key K2
d. M->TP : the decrypting key K for the product and

the approved purchase order
e. C->TP : the payment token and copy of the

purchase order
f. TP->C : the decrypting key
g. TP->M : payment token
The above messages represent different steps in the e-

commerce protocol. In this protocol the messages are
exchanged between a customer (C), a merchant (M) and a
trusted third party (TP). The exchange of value P between
X and Y is represented using the notation X ->Y: P. A
merchant has several products to sell.

The merchant places a description of each product on
an on-line catalog service with the trusted third party
together with an encrypted copy of the product. If the
customer is interested in a product, he downloads the
encrypted version of the product (step 1) and then sends a
purchase order to the merchant (step 2). Note that the
customer cannot use the product unless he has decrypted it.
Now the merchant does not send the decrypting key unless
the merchant receives payment.

The customer does not pay unless he is sure that he is
getting the right product.This is handled as follows: the
merchant sends the product (step 3) encrypted with a second
key, K2, such that K2 bears a particular mathematical
relation with the key, K1, where K1 is the key the merchant
used when uploading the encrypted product on the trusted
third party. Additionally, the merchant escrows the
decryption key, K , corresponding to K2, with the trusted
third party (step 4).

The mathematical relation between the keys K1 and K2,
is the basis for the theory of cross validation that has been
proposed [4]. Thus, by comparing the encrypted product
received from the merchant with the encrypted product that
the customer downloaded from the trusted third party, the
customer can be sure that the product he is about to pay for
is indeed the product he wanted. At this stage the customer
is yet to obtain the actual product because he does not have
the key, K, to decrypt the encrypted product. Once the
customer is satisfied with his comparison, he sends his
payment token to the third party (step 5).

The third party verifies the customer’s financial
information and forwards the decrypting key to the customer
(step 6) and the payment token to the merchant (step 7).

B. Modeling E-Commerce Protocol in CasperFDR:

The modeled E-Commerce protocol in CasperFDR is
shown below. In the specification the initiator C and
Responder M represents Customer and Merchant. TP
represents Third Party Server.
#Free variables
c, m : Agent
tp : Server
p, po, pt : Message
kcm : Sessionkey
InverseKeys = (kcm, kcm)
#Processes
INITIATOR(c,tp,p,po,pt,kcm)
RESPONDER(m,p,po,pt,kcm)
SERVER(tp,p,po,pt,kcm)
#Protocol description
0. -> tp : c
[tp != c]
1. tp -> c : {p}{kcm}
2. -> c : m
[c != m]
3. c -> m : po
4. m -> c : {p}{kcm}
5. -> m : tp
[m != tp]
6. m -> tp : kcm
7. c -> tp : po, pt
8. tp -> c : kcm
9. tp -> m : pt
#Specification
Secret(tp, p, [c])
Secret(c, p, [tp])
Agreement(tp, c, [po, pt])
Agreement(c, tp, [po, pt])
#Actual variables
Customer, Merchant, Mallory : Agent
Thirdparty : Server
P, Po, Pt : Message
Kcm : Sessionkey
InverseKeys = (Kcm, Kcm)
#Inline functions
#System
INITIATOR(Customer,Thirdparty,P,Po,Pt,Kcm)
RESPONDER(Merchant,P,Po,Pt,Kcm)
SERVER(Thirdparty,P,Po,Pt,Kcm)
#Intruder Information
Intruder = Mallory
IntruderKnowledge = {Customer, Merchant, Mallory,
Thirdparty, Kcm}

C. Analysis of E-Commerce Protocol using CasperFDR:

After compiling and checking the above model in
CasperFDR tool, attacks are found for every property
declared in specification part. Out of four property1 and
property2 are related to secret specifications, property3 and
property4 are related to authentication specifications.
CasperFDR tool found attacks for secret and authentication
properties in the specification part.

An attack generated by CasperFDR on the property1
Secret(tp, p, [c]) is shown below.

Dantuluri Sravanthi , International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 12-16

© 2010, IJARCS All Rights Reserved 15

0. -> Thirdparty : Merchant
1. Thirdparty -> I_Merchant : {P}{Kcm}
1. I_Thirdparty -> Customer : {P}{Kcm}
2. -> Customer : Mallory
3. Customer -> I_Mallory : Po
4. I_Mallory -> Customer : {P}{Kcm}
7. Customer -> I_Thirdparty : Po, Pt
8. I_Thirdparty -> Customer : Kcm
 The intruder knows P
Goodbye

The above attack can be explained in the following
steps.
a) Initially the intruder acts as a merchant (I_merchant)

when the Third party server sends Product information
(P) value to the Customer as shown in the above
messages 0 and first instance of message 1.

b) During the second instance of message 1 the intruder
acts as Third party server and sends P value to the
Customer.

c) Now the intruder directly communicates with the
customer and captures the information about payment
order (PO).

d) Now the intruder acts as a legitimate Third party during
the 7th and 8th messages and finally captures
information about payment token (PT).

e) However the communication between Customer and
Third party server is captured by the intruder by using
man-in-the-middle attack.
After receiving the entire information the intruder will

be in a position such that it can know the P, PO and PT.
An attack generated by CasperFDR on the property2

Secret(c, p, [tp]) is shown below.
0. -> Thirdparty : Merchant
1. Thirdparty -> I_Merchant : {P}{Kcm}
1. I_Thirdparty -> Customer : {P}{Kcm}
2. -> Customer : Mallory
3. Customer -> I_Mallory : Po
4. I_Mallory -> Customer : {P}{Kcm}
7. Customer -> I_Thirdparty : Po, Pt
The intruder knows P
Goodbye

The above attack can be explained in the following
steps.
a) Initially the intruder acts as a merchant (I_merchant)

when the Third party server sends Product information
(P) value to the Customer as shown in the above
messages 0 and first instance of message 1.

b) During the second instance of message 1 the intruder
acts as Third party server and sends P value to the
Customer.

c) Now the intruder directly communicates with the
customer and captures the information about payment
order (PO).

d) Now the intruder acts as a legitimate Third party during
the 7th message and finally captures information about
payment token (PT).

e) However the communication between Customer and
Third party server is captured by the intruder by using
man-in-the-middle attack.
After receiving the entire information the intruder will

be in a position such that it can know the P, PO and PT.
An attack generated by CasperFDR on the property3

Agreement(tp, c, [po, pt]) is shown below.

0. -> Thirdparty : Merchant
1. Thirdparty -> I_Merchant : {P}{Kcm}
1. I_Thirdparty -> Customer : {P}{Kcm}
2. -> Customer : Merchant
3. Customer -> I_Merchant : Po
4. I_Merchant -> Customer : {P}{Kcm}
7. Customer -> I_Thirdparty : Po, Pt
 Customer believes (s)he has completed a run of the
protocol, taking role INITIATOR, with Thirdparty, using
data items Po, Pt
Goodbye

The above attack can be explained in the following
steps.
a) Initially the intruder acts as a merchant (I_merchant)

when the Third party server sends Product information
(P) value to the Customer as shown in the above
messages 0 and first instance of message 1.

b) During the second instance of message 1 the intruder
acts as Third party server and sends P value to the
Customer.

c) Now the intruder acts as merchant and communicates
with the customer and captures the information about
payment order (PO).

d) Now the intruder acts as a legitimate Third party during
the 7th message and finally captures information about
payment token (PT).

e) However the communication between Customer and
Third party server is captured by the intruder by using
man-in-the-middle attack.
After receiving the entire information not only the

customer and merchant the intruder also in a position such
that it can know the P, PO and PT.

An attack generated by CasperFDR on the property3
Agreement(c, tp, [po, pt]) is shown below.
0. -> Thirdparty : Merchant
1. Thirdparty -> I_Merchant : {P}{Kcm}
1. I_Thirdparty -> Customer : {P}{Kcm}
6. I_Merchant -> Thirdparty : Kcm
2. -> Customer : Merchant
3. Customer -> I_Merchant : Po
4. I_Merchant -> Customer : {P}{Kcm}
 Customer believes (s)he is running the protocol, taking role
INITIATOR, with Thirdparty, using data items Po, Pt
7. I_Merchant -> Thirdparty : Po, Pt
8. Thirdparty -> I_Merchant : Kcm
Thirdparty believes (s)he has completed a run of the
protocol, taking role SERVER, with Merchant, using data
items Po, Pt
Goodbye

The above attack can be explained in the following
steps.
a) Initially the intruder acts as a merchant (I_merchant)

when the Third party server sends Product information
(P) value to the Customer as shown in the above
messages 0 and first instance of message 1.

b) During the second instance of message 1 the intruder
acts as Third party server and sends P value to the
Customer.

c) Now the intruder acts as merchant and communicates
with the customer and captures the information about
payment order (PO).

Dantuluri Sravanthi , International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 12-16

© 2010, IJARCS All Rights Reserved 16

d) Now the intruder acts as a legitimate Third party during
the 7th message and finally captures information about
payment token (PT).

e) However the communication between Customer and
Third party server is captured by the intruder by using
man-in-the-middle attack.
After receiving the entire information not only the

customer and merchant the intruder also in a position such
that it can know the P, PO and PT.

V. CONCLUSION AND FUTURE WORK

In this paper, the e-commerce protocol is modeled using
CasperFDR. The compilation was done with CasperFDR.
Attacks are found in this version. The attacks are interpreted
by CasperFDR and the message sequence results are
reported. In future we will fix the attacks found in the e-
commerec protocol.

VI. REFERENCES

[1] J. M. Atlee and J. D. Gannon, “State-based Model
Checking of Event Driven Systems Requirements,” IEEE
Transactions on Software Engineering, 19(1):13–23,
January 1993.

[2] W. Marrero, E. Clarke, and S. Jha, “A Model Checker for
Authentication Protocols. In Proceedings of the DIMACS
Workshop on Design and Formal Verification of Security
Protocols,” Rutgers University, NJ, September 1997.

[3] J. Mitchell, M. Mitchell, and U. Stern, “Automated
Analysis of Cryptographic Protocols Using Murphi,” In
Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, pages 141–151, 1997.

[4] I. Ray, I. Ray, and N. Narasimhamurthy, “A Fair-Exchange
Protocol with Automated Dispute Resolution,” Technical
report, University of Michigan-Dearborn, 1999. Submitted
for publication.

[5] G. Lowe, “Casper: A compiler for the analysis of security
protocols,” Journal of Computer Security, vol. 6, pp. 53–84,
(1998)

[6] C. A. R. Hoare, “Communicating sequential processes,”
Communications of ACM, vol. 21, no. 8, pp. 666–677,
(1978)

[7] C. A. R. Hoare, Ed., “Communicating Sequential
Processes,” Prentice Hall International, (1985).

[8] G. Lowe, “Breaking and Fixing the Needham-Schroeder
Public-key Protocol Using FDR,” In Tools and Algorithms
for the Construction and Analysis of Systems: Second
International Workshop, TACAS 96, pages 147–166, 1996.

[9] G. Lowe, “Some New Attacks Upon Security Protocols,”
In Proceedings of the 1996 IEEE Computer Security
Foundations Workshop, IEEE Computer Society Press,
1996.

[10] G. Lowe and A. W. Roscoe. “Using CSP to detect errors in
the TMN protocol,” IEEE Transactions on Software
Engineering, 23:659–669, 1997.

[11] A. W. Roscoe, “Proving Security Protocols with Model
Checkers by Data Independence Techniques,” In
Proceedings of the 1998 IEEE Computer Security
Foundations Workshop, IEEE Computer Society Press,
1998.

[12] N. Heintze, J. Tygar, J. Wing, and H. Wong, “Model
Checking Electronic Commerce Protocols,” In Proceedings
of the 2nd USENIX Workshop in Electronic Commerce,
pages 146–164, November 1996.

[13] B. Cox, J. D. Tygar, and M. Sirbu, “NetBill Security and
Transaction Protocol,” In Proceedings of the First USENIX
Workshop in Electronic Commerce, pages 77–88, July
1995.

[14] M. Sirbu and J. D. Tygar, “NetBill: An Internet Commerce
System Optimized for Network Delivered Services,” IEEE
Personal Communications, pages 34–39, August 1995.

[15] A. Fiat D. Chaum and M. Naor, ”untraceable electronic
cash,” In Advances in Cryptology – Proceedings of
CRYPTO ’88, pages 200–212. Springer-Verlag, 1990.

