
Volume 4, No. 10, September-October 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 56

ISSN No. 0976-5697

Presenting a tree structure for storing and searching large lists of order O(1)

ShirinAbbasloo*
Department of computer,

Islamic Azad University, Baft, Iran,
abbaslooshirin@gmail.com

FarokhKoroupi
Department of computer,

Islamic Azad University, Baft, Iran,
farokh.koroupi@iaubaft.ac.ir

Reza Noormanid Pour
Department of computer,

Islamic Azad University, Sirjan, Iran,
noormanir@iausirjan.ac.ir

Abstract:Sort the list of greatest concern is that mathematicians are working on optimizing the algorithms. Sort the list so far using linear arrays
was performed. Due to the limited size of the linear array and traverse difficult time sorting this type of data structure and it was not desired.
Sorting in linear lists must be scanned once for each element and other elements to be compared. Thus, when about twice the size of the list to
sort the list (O () to spend.Scrolling up to search for the elements as we move toward the desired element. The best way to split the original
list into two smaller lists. With this action against O (Logn) to be spent.In this paperhaspresenteda tree structureforstoringandsearching that can
order largelistsinO (n) order time.Italsohasasearchfeatureinthelistofpossiblelistelementsdo not dependon the sizeandtypeofthelististhesametime(O
(1)).

Keywords:NLR traversal, Searching algorithm, Sorting algorithm, Tree structure.

I. INTRODUCTION

Sorting algorithm, unordered list and take it to the Sort
Ascending or Descending to sort out [1, 2]. Lists can
contain letters or numbers [3, 4, 5]. Obviously, when we
want to sort a list of elements that should be compared to
the list and each placed in the right place [6, 7, 8, 9].After
the list of accounts that n is at least n times the element
because each element of work to do compared to the other
elements of the list is a linear list [10, 11].There
arealgorithmsforsortinglistsin order ofO (nlogn)andhigher
[12].In generalsortingalgorithmscan be
dividedintothreecategories.

a. InsertionSortAlgorithm
b. selectivesortingalgorithm
c. divide and conquersorting algorithms
Insertions of the approach taken in the top of the list

are inserted in the right place [13, 14].The option element is
selected and compared with the rest of the ingredients and
put in the right place [15, 16].The divide and conquer
approach to general list into smaller lists and we'll sort it
lists [17]. The small list and merge the sorted list to get
sorted first [18].Algorithm is presented in this paper is a
method of Insertion. In this algorithm, arrivals elements are
in the right place at the tree and do not spend extra time to
do the sorting. Also search in the list that is true, only time
spent traversing a vertex of the tree to search for the desired
element. The paper concludes in Section sorting and
searching algorithms are presented and compared with
other algorithms, the simulation results are listed in the
chart.

A. Provided a tree structure:
As mentioned sorting algorithms on a linear lists

work.After a long time of these algorithms is less than O
(N) not be. Because these lists are linear and N is exactly

the height of the list. The list can never be less than its
height. In our algorithm, we use a different data
structure.data structure whose height is less than linear lists.
Building a tree data structure that is most appropriate for
times when you can bring down an algorithm. We consider
this algorithm, each node in the tree, the tree, including 36
children. Of these 36 children 26 children 10 children to the
letters A..Z and numbers 0..9 are, however, much has
changed. Obviously, each node represents a letter or
number in which the home is located. Also for the optimal
algorithm memory consumption for every knot that tied it
in the list of existing allocated memory will be and if it is
not tied up in the list, memory occupation.In other words,
the tree and the tree is the perfect tree algorithm. Tree in
Figure 1, in which the characters are stored in the list, is
displayed.

List = john, marry, tomas135, zero

Figure 1: The tree which stores have it in List 1. In this tree with a height

of 9, there are 21 nodes.

ShirinAbbasloo et al, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 56-60

© 2010, IJARCS All Rights Reserved 57

With regard to the structure of a tree is presented one
can understand that algorithm has regular letters and
numbers should be entered as character to character
padding and in the proper place to phrase should be
according to tree form 1 character words of the entrance in
the proper place. since peak height times the length of the
largest password, then b (tree) = MAX (Len) can be
understood by the algorithm in the worst case, for every
word of order O (h), but also O (h)Children should also be
arranged in the following order of the numbers 0 ... 9 in the
higher priority and the characters A .. Z, respectively,
should be a lower priority. So in the left navigation tree
NLR will start scrolling the numbers and letters are read
[19, 20]. The numbers are higher priority because of letters,
numbers and letters are the first node after the last node'' 0''
and'' Z'' to navigation Skip to assume the following list as
input to the resulting tree-like algorithm is given in Figure
2.

List = book, integer, type, 12john, short123, short

Sorted list = 12john, book, integer, short123, type, short

Figure 2 - a tree is built, and then traversal the list NLR, List Sorted list is
created.

The fundamental problem is that the tree does not
specify a node, the node determines whether the final word.
This means that if we traverse the tree String 'type', 'typ',
'ty', ’t’, and all the trees are measurable. To resolve this
problem, we consider each node of a B-type Boolean that
these bits are initially false for all nodes are equal. If the
build tree, char last word was a bit ended to put it to true.
Then when scrolling the navigation tree, if you were true to
character bits ended up here was a character created and
false if it should continue scrolling. For example, the tree in

Figure 2, if the words 'short123', 'short', I have to scroll
after scroll 'short' work to continue tree traversal word
'short123' is also measurable. As shown in this tree cannot
be repeated two or more words. If the List 2 words 'short'
can only be navigated after the word 'short' to find. For the
sorting algorithm is a great fault for removing the defect of
a variable name to another count that at first for all the
nodes equal to zero and we only tied for the final if the
prophet ended to be true to a unit of the count is added.
With this interpretation, each node can determine the end of
a word is a count of zero indicates that the number is equal
to the number of words in the list have been saved. For
example, consider Figure 3 lists:

List = 12, 123, 23, 12

Figure 3: The status of each node in the tree is stored in the list.

We also created variables to test the appropriate tree
node count to count the number of elements in the list must
be equal. In other words, if SUM (count) =N resulting tree
was so true.

Due to the above structures, the tree data structure
must be defined as follows:
Type tree_struct {
Char value;
Boolean ended=false;
Int count=0;
Tree child [0..9, 'A..Z'];
} Tree;

Tree data structure is represented by a node of type
character specifies the value of each node.A byte that
specifies the terminal nodes of the Boolean type is an
integer that specifies the number of occurrences of each
word. Each node in the tree for 36 pointers to child nodes
available. The numbers refer to the first 10 pointers and 26
pointers point to the next word A..Z. Each node has 3
pointers and 36 bytes for the data it needs. However, the
number of nodes, each node can vary depending on the
input data. If the tree is supposed to sort the numbers, the

ShirinAbbasloo et al, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 56-60

© 2010, IJARCS All Rights Reserved 58

number of pointers that each node should be 10 pointer.Or
if this character is the big and small of importance so
should 26 pointing to the character is small and 26 pointing
to the character was great in pointing out the need for total
62 pointer.

B. Sort in the proposed structure:
The sorting algorithm is applied on the tree in the

words entered by the user to put them on the tree. The
father of the child nodes can be made at the relevant
pointers. You should also check if a node as the last
character of a word after it ended variable nodes have to be
true. The last character must be also count +1.
Void sort () {
Node=get ();
For (i=1; i<=len (node);i++){
If (stree.child[node[i]]==null) {
Tree child =new tree;
Child. Value =node[i];
If(i==Len(node)){
Child.Ended =true;
Child.Count++;
}}
Stree.child[node[i]] = child;
Stree = child;
}}

Since the arrival of the tree are the extra time not
require for the sorting operation the proposed sorting
algorithm of order O (1) is each point represents a tree in a
sorted list.

C. Search on the proposed structure:
Now that the tree was very helpful in searching. Search

algorithms to traverse the list to find a specific element
[21]. Some of these algorithm are list to list divided into
two and then each from the list are based on being a
downward spiral or seek upward and finally element on the
issue. Some other strategy based on its own investigations
to list their tree like Heap that depends on, the Heap or
changeover-Heap. Algorithm search for manuscripts list

from beginning to end.Measuring to the element to
find.Because in tree that presented in this article, can search
an element with traversal an edge of tree. Therefore, it’s the
NLR traversal of this tree, that traversal each node and then
children of those node until end of edges with difference
that if finished node of this edges equal to finished
character of special element. Here is a look at the tree, the
worst and best of times, O (h) where h is the length of the
word. Since h is a constant of the order of the search tree in
O (1) is. Below is the algorithm for the search function in
the tree.
Void search (){
node= get ();
for(i=1; i<=len(node);i++) {
if (stree.child[node[i]) !=null) {
stree = stree.child[node[i]];
}else{break;}
} if ((i==len(node)&(stree.ende==true))
Return true;
Else
Return false;
}

The variables used in the data structure can be used to
do other.For example, is the number of
words that have been repeated in the list or height of the
tree with these nodesisthe highest word in list.
The two simple conditions that guarantee the right to the
tree of:

a)
b)
If this condition was true then is true tree.

II. CONCLUSION

In this section, the results of tests performed of
presenter sorting and searching algorithm with other
algorithm, then performed advantage and disadvantage of
this algorithms. Should be noted CPU Intel 2400MHZ core
i7 system with the test results obtained.

Table 1. Spent time of sorting algorithms

N=10000000 N=100000 N=1000 N=10 Algorithm
19000224200.661 1900950.119 195.743 0.049 Selection sort

25000070000.049 2500450.020 253.009 0.042 Bubble sort

2000.092 20.033 0.212 0.007 Quick sort

10.802 0.745 0.025 0.001 This algorithm

Table 2. Spent time of searching algorithms

N=10000000 N=100000 N=1000 N=10 Algorithm
21496.250 163.760 1.759 0.019 BST

23698.654 259.305 2.812 0.027 Heap

627410.853 5427.631 20.794 0.312 Linear

0.002 0.002 0.003 0.002 This algorithm

ShirinAbbasloo et al, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 56-60

© 2010, IJARCS All Rights Reserved 59

(a) (b)

Figure 4 - Simulation results of sorting algorithms (Section A) and search algorithms (Section B)

Top of the charts and graphs, sorting and searching
algorithms are harvested, which was presented in this paper
is suitable for small N and large N is very efficient. For a
list of small N, the number of elements it lists the
maximum length is less than the max (height) <= N.
because in other algorithm if there are a list with 1 element,
for sorting time does not spent and for searching only 1
comparison needed. While the, presented sorting
algorithms need O (h) and presented search algorithms
need O (h) time. In general, the algorithms of order O (l)
are not useful for small data. In other words, only for
storage of linear lists the word as bytes of memory is
required. In this structure for store a node, 1 byte needed to
store character and 1 byte for store Ended of this node and
2 Byte need to store number of iterations. So 4 byte for
information of this character needed and each pointer need
4 byte to store. If there are 36 pointer for a node, so much
for a node occupies 166 bytes of memory.

That’s why these algorithms for sorting and storage of
information on the numbers and not affordable and in some
cases, such as libraries and documentation centers is
recommended. However, this algorithm is useful if the
memory is not a problem. Quick sort algorithms with a
comparison of this algorithm are compared. Suppose that
the number of characters that a list of 1000000 elements,
10000000 list of characters. Quick sort algorithm, this list is
but a memory to 10MB of memory, our algorithm is equal
to 1/5GB. Furthermore, the time consumed in the Quick
sort algorithm in worst case O (n2) algorithm and O (n) that
if these algorithms are implemented on a cpu Intel
2400MHZ core i7 processors fast sorting algorithm when
the 2000000 milliseconds, and the algorithm presented in
this paper runs in front of the 2000 MS runs. Compare All
you need to sort the list by a 1000000 memory elements,
2000000 is equal to the time of 2000MS arrives. It is a way
to search for a particular element in the list of search
algorithms have been very little time to spend on the search
algorithm of order O (l), and does not depend on the size of
the problem.

III. REFERENCE

[1]. Erik Sintorn, Ulf Assarsson, Fast parallel GPU-sorting
using a hybrid algorithm, Journal of Parallel and
Distributed Computing, Volume 68, Issue10, October
2008, Pages 1381-1388.

[2]. AtifRahman, SwakkharShatabda, Masud Hasan, An
approximation algorithm for sorting by reversals and
transpositions, Journal of Discrete Algorithms, Volume 6,
Issue 3, September 2008, Pages 449-457.

[3]. Wolfgang Rönsch, Henry Strauss, Timing results of some
internal sorting algorithms on vector Computers, Parallel
Computing, Volume 4, Issue 1, February 1987, Pages 49-
61.

[4]. Christos Levcopoulos, Ola Petersson, Splitsort—an
adaptive sorting algorithm, Information Processing Letters,
Volume 39, Issue 4, 30 August 1991,Pages 205-211.

[5]. VamsiKundeti, SanguthevarRajasekaran, Efficient out-of-
core sorting algorithms for the Parallel DisksModel,
Journal of Parallel and Distributed Computing, Volume
71, Issue11, November 2011, Pages 1427-1433.

[6]. SanguthevarRajasekaran, An optimal parallel algorithm for
sorting multisets, Information Processing Letters, Volume
67, Issue 3, 17 August1998, Pages 141-143.

[7]. Mingming Li, Shuming Liu, Ling Zhang, Huanhuan
Wang, FanlinMeng, Lu Bai, Non-dominated Sorting
Genetic Algorithms-IIBased on Multi-
objectiveOptimization Model in the Water Distribution
System, Procedia Engineering, Volume 37, 2012, Pages
309-313.

[8]. José Luis Soncco-Álvarez, Mauricio Ayala-Rincón,
Sorting Permutations by Reversals through a Hybrid
Genetic Algorithm based onBreakpoint Elimination and
Exact Solutions for Signed Permutations, Electronic Notes
in Theoretical Computer Science, Volume 292, 5 March
2013, Pages119-133.

[9]. SèverineBérard, Cedric Chauve, Christophe Paul, A more
efficient algorithm for perfect sorting by reversals,
Information Processing Letters, Volume 106, Issue 3, 30
April2008, Pages 90-95.

[10]. M. Basu, Dynamic economic emission dispatch using
nondominated sorting geneticalgorithm-II, International
Journal of Electrical Power & Energy Systems, Volume
30, Issue 2,February 2008, Pages 140-149.

[11]. RenataFurtuna, Silvia Curteanu, Florin Leon, An elitist
non-dominated sorting genetic algorithm enhancedwith a
neural network applied to the multi-objectiveoptimization
of a polysiloxane synthesis process, Engineering
Applications of Artificial Intelligence, Volume 24,Issue 5,
August 2011, Pages 772-785.

[12]. T. Miyadokoro, N. Nishimura, S. Yamamoto, subalpine
old-growth coniferous forest, central Japan, Forest
Ecology and Management, Volume 182, Issues 1–3,
3September 2003, Pages 259-272.

[13]. Susanne Hambrusch, Chuan-Ming Liu, Walid G. Aref,
SunilPrabhakar, Efficient query execution on broadcasted

ShirinAbbasloo et al, International Journal Of Advanced Research In Computer Science, 4 (10), September–October, 2013, 56-60

© 2010, IJARCS All Rights Reserved 60

index tree structures, Data & Knowledge Engineering,
Volume 60, Issue 3, March 2007,Pages 511-529.

[14]. Said M. Megahed, Efficient computation algorithm for
dynamic modelling of treestructure robot arms, Robotics
and Autonomous Systems, Volume 10, Issue 4,
1992,Pages 225-242.

[15]. SéverineFratani, Regular sets over extended tree
structures, Theoretical Computer Science, Volume 418, 10
February 2012, Pages 48-70.

[16]. Athar Ali Moinuddin, Ekram Khan, Mohammed Ghanbari,
The impact of tree structures on the performance of
zerotreebased wavelet video codecs, Signal Processing:
Image Communication, Volume 25, Issue 3, March 2010,
Pages 179-195.

[17]. Stefan Edelkamp, Stefan Schrödl, Chapter 2 - Basic
SearchAlgorithms, Heuristic Search, 2012, Pages47-87.

[18]. Bin Wu, CunhuaQian, Weihong Ni, Shuhai Fan, Hybrid
harmony search and artificial bee colony algorithm
forglobal optimization problems, Computers
&Mathematics with Applications, Volume 64, Issue
8,October 2012, Pages 2621-2634.

[19]. N. Poursalehi, A. Zolfaghari, A. Minuchehr, Differential
harmony search algorithm to optimize PWRsloading
pattern, Nuclear Engineering and Design, Volume 257,
April 2013, Pages161-174.

[20]. N. Poursalehi, A. Zolfaghari, A. Minuchehr, PWR loading
pattern optimization using Harmony Searchalgorithm,
Annals of Nuclear Energy, Volume 53, March 2013, Pages
288-298.

[21]. R. Krueger, G. Simonet, A. Berry, A General Label Search
to investigate classical graph searchalgorithms, Discrete
Applied Mathematics, Volume 159, Issues 2–3, 28
January2011, Pages 128-142.

