
Volume 4, No. 9, July-August 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 21

ISSN No. 0976-5697

Clustering algorithm optimized for Cell Broadband Engine Architecture

Ioan Ungurean
Department of Computers, Electronics and Automation

Stefan cel Mare University of Suceava Suceava, Romania
ioanu@eed.usv.ro

Abstract: In this paper, we want to evaluate the performance of Cell B.E. processor which is based on the Cell Broadband Engine Architecture
(CBEA). For this purpose, we chose a clustering algorithm that we have optimized for this architecture by efficiently harnessing the facilities
provided. Performance of the Cell B.E. processor was evaluated by executing the algorithm using computation in single and double precision. In both
cases, performance was evaluated with and without SIMDization. For single precision, we obtained a maximum speedup of 29.07 by activating 6
SPE processors without SIMDization and a speedup of 10.9 for 6 SPE processors with SIMDization. For double precision, we obtained a maximum
speedup of 14.51 by activating 6 SPE processors without SIMDization and a speedup of 8.34 for 6 SPE processors with SIMDization.

Keywords: Cell Broadband Engine Architecture, DMA, SIMD, speed-up, parallel computing

I. INTRODUCTION

In order to meet the computing requirements which, in
the last decade, are increasingly higher, there are developed
computer systems that in addition to the central processor
have acceleration units. An example of this is the Cell BE
processor [1][2][3] from the PlayStation3 game consoles
that has a core processor based on PowerPC architecture and
eight specialized cores for intensive calculations. In order to
use at maximum the facilities provided by these computer
systems, the applications should be developed and optimized
for these architectures.

An application developed for the execution on a normal
processor can be compiled and executed on these systems but

will not use all available computing facilities. For this reason,
applications should be developed specifically for these
architectures.

In this paper, we want to evaluate performance that can be
achieved by execution on a clustering algorithm on Cell B.E.
processor compared to the sequential version executed on
normal processors. The remainder of this paper is organized as
follows: Section 2 presents an overview of the Cell Broadband
Engine architecture, Sections 3 present the algorithm that is
optimized for Cell Broadband Engine, Sections 4 present the
optimization and parallelization strategies used, Section 5
evaluates the performance achieved by execution of the
algorithm on PlayStation 3, and the final conclusions are drawn
in Section 6.

Figure 1. Cell Broadband Engine Architecture[3]

Ioan Ungurean, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,21-24

© 2010, IJARCS All Rights Reserved 22

II. CELL BROADBAND ENGINE

For PlayStation3 (PS3) game console, STI consortium
consisting of Sony, Toshiba, and IBM developed the Cell
Broadband Engine architecture (CBEA) [3] .

Cell BE processor was developed based on CBEA
architecture, which is behind the PS3 game console launched in
November 2006. CBEA architecture is based on 64bits
PowerPC architecture to which eight cores for intensive
calculations were added. Practically, it contains a PowerPC
processor called PPE (Power PC Element), and 8-acceleration
cores called SPE (Synergistic Processing Elements) [3].

All these processors are interconnected through a high

speed bus called EIB (Element Interconnect Bus), as can be
seen in Figure 1. SPE processors have not cache memory; they
have just 256KB of local memory for code and data area.
Application that is executed on the SPE cores must fit into this
dimension in terms of requirements for code and data. In order
to access the main memory, the SPE cores can use DMA
transfers. We can say that the SPE cores are intermediate
option between the conventional processors with cache
memory and GPU processors that are used increasingly in HPC
applications. SPE processors have RISC architecture with a
SIMD extension with 128-bit registers.

PS3 game consoles allowed the installation of Linux
operating systems and allowed programmers to develop
applications optimized for CBEA architecture. In order to come
in the aid of application's developers, IBM provides an SDK
for CBEA architecture. This SDK contains libraries for
efficient use of DMA transfers between main memory and SPE
cores and the SIMD extension.

SPE cores of the Cell BE processor are not optimized for
computations in double precision; reason for that IBM
developed the PowerXCell 8i processor in which the SPE cores
are optimized for computations in double precision. Based on
these processors, IBM developed the QS20 and QS22 blade
servers for HPC systems development. Processors with CBEA
architecture entered powerful in the HPC field in 2009 when
Roadrunner supercomputer was the first supercomputer that
has exceeded 1PFlops for computing power [4].

This processor allows achieving a higher performance
because it allows the SPE core to initiate a DMA transfer
between the local memory and main memory, and during DMA
transfer, it can perform other computing tasks. The most
effective way to exploit this facility is to us double buffered for
DMA transfers. In this method computing operations on data
from local memory are performed in parallel with DMA
transfers of data that will occur in calculations in the next step.
It should be noted that the efficiency of this method depends
very much on the algorithm that is optimized for CBEA
architecture.

According to the programming guide of this processor, if
the facilities provided by these processors are effective used,
we can achieve a speedup of almost 100 related to the sequence
variants. From the programmer's point of view, three important
aspects should be followed to achieve maximum performance,
namely: SPE cores must perform operations in parallel; each
SPE must use SIMD in order to maximize the operations that

they carry out, and double buffed method must be used in order
to perform DMA transfer operations in parallel with computing
operations.

III. OVERVIEW OF THE ALGORITHM

From the pattern recognition field [5], we chose the k-
medoids algorithm described in [6]. This algorithm requires
knowledge of the number M of clusters in which the set of
patterns will be classified. Initially, the medoids of the M
clusters are represented by M random patterns from the dataset.

The remaining patterns are included in the appropriate
clusters with the nearest medoids. Once all patterns are
included in one of the clusters, for each class, the centroids are
calculated (each cluster taken into account all patterns that have
been assigned). The new medoids of the clusters are the
patterns that are closest to the centroid. The assignment
procedure of the patterns is resumed until the centroids
determined during two consecutive iterations coincide [5].

The algorithm has as input the set of patterns, which will be
classified (N patterns, each pattern having p features) and the
number of clusters in which will be classified the input dataset.
In order to avoid the computation, at each iteration, the distance
between the medoids (which is patterns from input dataset) and
the patterns a matrix of distances is computed for the set of
input forms. Algorithm 1 shows the sequential variant of this
method.
Algorithm 1. Sequential algorithm.

Initialize the dynamic medoids attached to those M clusters
with M random patterns from the input data set.

Compute the matrix of distances between the N patterns
from the dataset.

Repeat
for each pattern from the input dataset do

*) includes the pattern in the cluster for which the
distance between pattern and medoid is minimal
(determines the minimum from the matrix of
distances)

■
for each cluster from the M clusters do

Calculate the centroid of the cluster.
Find the pattern that is the closest to the centroid.
Initialize the medoid with the new pattern found.

■
Until new medoids coincide with those from the previous step.

IV. OVERVIEW OF THE ALGORITHM

The first step in the implementation of the algorithm for the
CBEA processor is the distribution of computational tasks to
the SPE cores. In order to split the calculations to SPE cores,
the matrix of distance is divided equally by the number of the
SPE processors on which the algorithm is executed. The follow
up, we provide the method of dividing the matrix of distance to
the noSPE processors. This problem is reduced to equally split
the area of a triangle (above the main diagonal). For each
processor SPE, we must determine the number of rows in the
matrix associated and the offset from where these rows start.

Ioan Ungurean, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,21-24

© 2010, IJARCS All Rights Reserved 23

Figure 2. Splitting the matrix of distances to the SPE processors

It is considered that the matrix has N rows and N columns,
so the area of the triangle above the main diagonal is (N*N)/2
(see Figure 2). Therefore the area associated to each SPE
processor is (n*n)/(2*noSPE).

To find the number of rows associated to the first SPE
processor (nSPE0) a quadratic equation must be solved:

(0 0 0)* 0 *

2 2*
n offset n offset nSPE nSPE n n

noSPE
− + − −

= (1)

2
20 2*(0)* 0 0nnSPE n offset nSPE

noSPE
− − + = (2)

In the same way, the number of processors assigned to each
PPE processor is determined by replacing the offset value
offset0 with the value associated to each processor.

As redundant data, each SPE processor will know the
dynamic medoids associated to the M clusters. The algorithm
executed on the PPE processor is:

Algorithm 2. The algorithm executed by the PPE processor
Divide equally input dataset to SPE processors who are

activated.
Initialize the medoids attached to the M clusters with M

random patterns from the input dataset.
Divide the distance matrix to the SPE processors.
Send the command to the SPE cores in order to calculate

the matrix of distances.
Wait for the SPE processor to complete the assigned jobs.

Repeat:
Send the command to each SPE processor in order to

determine for each associated pattern the cluster to which
belongs and to determine the local centroid for each cluster
(the patterns are equally divided to the SPE processors).

Determine global centroids with local centroids provided
by each SPE processor.

Send the command to the SPE processors in order to
determine the each local pattern that is closest to each centroid
associated to the M clusters (the patterns are equally divided to
the SPE processors).

Wait for the SPE processor to complete the assigned jobs.
Determine each pattern that are the closer to the each

centroid using the patterns received from the SPE processors.
These patterns will be the new medoids.

Until new medoids coincide with those from the previous
step.

The algorithm executed on each SPE processor is:
Algorithm 3. The algorithm executed by the SPE

processors

Repeat:
Wait commands from the PPE processor.
If is the command for the computing of the matrix of

distances.
Take the number of rows associated and offset for the

matrix and distances.
Compute the associated part of the matrix (it uses DMA

transfer in order to access the patterns and the matrix of
distances from the main memory).

Signals the PPE processor that the associated operations
were performed.

else if is the command to determine the cluster for each
form and to compute the centroid for each cluster.

Take the number associated patterns and the offset.
Determine for each associated pattern the cluster to which
belongs.

Compute the centroid for the clusters using local patterns.
Signals the processor PPE that were made related operations
and send local centers of gravity calculated.

else if is the command for determination of patterns closer
to the centroid.

Take the number associated patterns and the offset.
Determine the local patterns which are closer to each centroid.

Signals the processor PPE that were made related
operations and send the patterns which are closer to the
centroids.

■
Until the command to end the application is received.

V. EXPERIMENTAL RESULTS

The proposed algorithm was executed on a PlayStation 3
game console that has a Cell BE processor with 6 SPE cores
active. For a detailed analysis of the performance of Cell BE
processor, the algorithm was executed using calculations in
single and double precision with and without utilization of the
SIMD library. For comparison, we performed a serial
implementation of the algorithm which was executed on the
PPE core of the Cell BE. Input data were generated randomly
in order to execute different versions of the algorithm in terms
of the number of patterns and the number of characteristics of
the patterns. We generated 1000000 test forms with 1024 and
256 characteristics (p = 256 and p = 1024).

Figure 3 presents the results obtained for 1000000 patterns
where we use single precision and M = 100. Figure 3 presents
the speed-up obtained by activating 1, 2, 3, 4, 5, and 6 SPE
processors. From this figure, we can see a significant difference
between the algorithm implementation with utilization of the
SIMD libraries and without utilization this library. In this case,
we have achieved a maximum speed-up of 29.07 with SIMD
library and six SPE processors and 10.9 with six SPE
processors without SIMD library.

Ioan Ungurean, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,21-24

© 2010, IJARCS All Rights Reserved 24

Figure 3. Speed-ups achieved for single precision computing

Figure 4. Speed-ups achieved for double precision computing

Figure 4 presents the results for 1000000 patterns where we
use double precision and M = 100. In Figure 4 presents the
speed-up obtained by activating 1, 2, 3, 4, 5, and 6 SPE
processors. In this case, we have achieved a maximum speed-
up of 14.51 with six SPE processors and SIMD library and 8.34

with six SPE processors and without SIMD library. It can be
seen that in this case, speedup are lower than single precision
because the volume of transferred data and computational
effort is much higher than in the first case.

VI. CONCLUSIONS

From the obtained results, we can see that the speed-up
reaches high values in relation to the number of cores used.
Furthermore, to achieve these results, the algorithm has been
specifically optimized for the CBEA architecture. It is observed
that the best results are obtained if we use SIMD library. This
is occurred because the algorithm performs calculations using
large vectors. If we chose an algorithm that does not make
calculations on vectors the utilization of the SIMD library will
not bring in a performance benefit.

VII. REFERENCES

[1] Buttari, Alfredo, et al. "A rough guide to scientific computing
on the PlayStation 3." ICL, University of Tennessee Knoxville,
Tech. Rep. UT-CS-07-595 (2007).

[2] Ungurean, Ioan, and Nicoleta-Cristina Gaitan. "Speech analysis
for medical predictions based on Cell Broadband Engine."
Signal Processing Conference (EUSIPCO), 2012 Proceedings
of the 20th European. IEEE, 2012.

[3] ****, An enhanced Cell Broadband Engine processor with
improved double-precision floating-point performance:
PowerXCell 8i Processor, IBM DeveloperWorks, May 2008.

[4] Barker, Kevin J., et al. "Entering the petaflop era: the
architecture and performance of Roadrunner." Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE
Press, 2008.

[5] Kumar, A., and N. Kannathasan. "A Survey on Data Mining
and Pattern Recognition Techniques for Soil Data Mining."
IJCSI International Journal of Computer Science Issues 8.3
(2011).

[6] Sergios Theodoridis and Konstantinos Koutroumbas. 2006.
Pattern Recognition, Third Edition. Academic Press, Inc.,
Orlando, FL, USA.

	INTRODUCTION
	CELL BROADBAND ENGINE
	OVERVIEW OF THE ALGORITHM
	OVERVIEW OF THE ALGORITHM
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

