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Abstract: Text clustering is a text mining technique used to group text documents into groups (or clusters) based on similarity of content. This 
organization (i.e. clustering) is so as to make documents more understandable and easier to search the relevant information, easier to process, 
and even more efficient in utilizing communication bandwidth and storage space. An example is clustering results of a web search engine 
operation into groups of similar documents. Many text clustering algorithms have been developed using different approaches, but none can be 
said to be the best. The choice of a particular algorithm is a big issue to text clustering system developers. K Means is arguably the most popular 
text clustering algorithm. However, just like the others, it must be having its own weaknesses. In this paper, we explore the K Means algorithm 
as well as its variants and discuss their appropriateness in text clustering. We describe the characteristics of the algorithms accompanied by some 
examples and illustrations in an attempt to discover the strengths and weaknesses. The paper thus gives an in depth view of the K Means 
algorithms, discusses the appropriateness of the algorithms, and also gives guidance to researchers of text mining concerning the choice of K 
Means for text clustering. 
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1. INTRODUCTION 

1.1: Text Clustering 
Data mining (DM) can be defined as extraction of useful 
information from large structured data sets. A structured data 
set is one with well defined arrangement, e.g. a database table 
with well defined fields, sizes of fields, etc. By observing large 
data sets over a period of time, we can deduce previously-
unknown and useful information concerning patterns, models, 
trends, and rules in the area of application. For example, a 
careful analysis of a retail database can deduce that item x goes 
with item y. However, since the most natural form of storing 
data is in form unstructured data (e.g. text documents, web 
documents - which have no well defined arrangements), we 
must apply text mining to extract useful information. 
‘Traditional data mining assumes that the information to be 
“mined” is already in the form of a relational database’ [26]. 

Text mining (TM) refers to the process of extracting 
useful and non-trivial patterns or knowledge from unstructured 
text. TM can be applied to detect patterns, models, trends, or 
rules from unstructured data. It is more complex task than data 
mining since it deals with text data that are inherently 
unstructured, ambiguous and fuzzy. 

Text clustering is a DM or TM technique used to group 
data sets with similar content. ‘Normally, documents within a 
cluster are more similar to each other than documents lying in 
other clusters’ [33]. For example, electronic text messages that 
discuss a related topic will form a cluster. 

1.2: Text Clustering Algorithms 
Many text clustering techniques (i.e. algorithms) exist, and can 
be classified into various types including distance-based 
algorithms, frequent sequence algorithms, feature selection 
and extraction algorithms, density-based algorithms, 

probability-based algorithms, grid-based algorithms, ontology- 
based algorithms, and neural networks algorithms. 

It’s important to note that none of the algorithms is fully 
sufficient to cluster text documents, and none is dominant over 
the others. Each has its own strengths and limitations based on 
the following criteria. The criteria are also the desirable 
characteristics of a text clustering algorithm. 
• Document representation model: It’s important to 

represent the unstructured text documents using an 
appropriate structured representation. 

• Defining the similarity measure: The effectiveness of a 
clustering algorithm depends on the definition of 
“similarity”, as documents’ similarity is hard to define. 

• Dimension reduction: Because of the usual high 
dimension of textual data, it’s important to reduce this 
size (e.g. by removing words that are irrelevant to the 
topic) to improve efficiency of operations. This is 
however not easy to achieve. 

• Clusters labels: Obtaining appropriate label/topic name 
for each cluster is appropriate but also difficult. Note that 
text clustering is unsupervised and so cluster labeling is 
not user’s activity. 

• Number of clusters: Deciding the number of clusters is 
also important. It is difficult to specify a reasonable 
number of clusters for a data set when you have little 
information about it. 

• Overlapping of clusters: The algorithms should allow 
for overlapping of document clusters. Some documents 
may each concern several topics. 

• Scalability: An algorithm should be scalable so as to 
cater for huge data sizes. 

• Flexibility: An algorithm should be flexible. It should be 
able to deal with different types of attributes, clusters 
with arbitrary shapes, and noise. 
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2.  THE TEXT CLUSTERING APPROACH 
 
K Means is a distance-based algorithm and so the clustering 
approach discussed here is distance-based. 

Applying DM techniques (e.g. data clustering) is simple 
and straight forward since the data is structured. But when 
dealing with unstructured text documents, we can’t apply the 
traditional DM clustering straight. But if we could get a way 
of converting the unstructured text documents into a structured 
form, we could then simply apply the traditional DM 
clustering on the resulting structure. This is the usual approach 
in text clustering, and it contains three key tasks, i.e. 
(i) Document representation: Convert the text documents 

into a structured form so that we can apply the traditional 
DM clustering. 

(ii) Definition of similarity measure: Define how a 
document (using the structured form) is similar to 
another (so that similar documents go to the same 
clusters). 

(iii) Clustering logic: Define the logic (i.e. algorithm) of 
determining exactly how the documents are assigned to 
their clusters based on the above similarity measure, and 
using the structured representations of the documents. 

2.1: Document Representation 
The typical model used by distance-based algorithms is the 
vector space model (VSM), and the simplest implementation 
of the VSM is the Boolean model, whereby a document is 
regarded simply as a “bag of words” (i.e. a set of words). ‘In 
mathematics, a bag, also called a multiset, is a set with 
duplicates allowed’ [30]. Here, a collection of n documents 
containing m terms (or words) is represented using a matrix of m 
rows and n columns, whereby the rows represent the terms (or 
words) and the columns represent the documents. In other 
words, the rows are term vectors while the columns are 
document vectors. The ijth entry in the matrix is either a 1 (if 
the ith term is present in the jth document), or a 0 (if not).  
Thus, this ‘term-document’ matrix is said to be a “bag of 
words” since it contains repetition of values 1 and 0. In space-
based view, a document will be a data point in a high 
dimensional space, whereby each term is an axis of the space. 
 
Example 
Assume the following three documents with underlined 
identifiable key terms. Obviously, the underlined qualify to be 
the key terms to form the basis of identifying what a document 
talks about, and thus do clustering. 

D1: Eating fruit improves health. 
D2:  Give your infant fruit regularly, for the infant to 

have good health. 
D3:  Regular exercise improves your health

 

. 
We construct a term-dictionary as T1: fruit, T2: health, T3: 
infant, T4: exercise. We can then form a term-document 
matrix as 

 
 
 

 
Here, the first row is the vector (1, 1, 0) representing the 

first term (fruit), showing that the term occurs in the first and 
the second document, but not in the third. Similarly, the vector 

(1, 1, 0, 0) represents the first document (that contains the first 
and the second terms, but not the third and the fourth terms). 
And entry A42 is 0, showing that the fourth term (exercise) is 
not present in the second document. 
 
The space-based view 
In space-based view, the documents will be represented using 
four dimensions (because of four terms), and the three 
documents will be the points (1, 1, 0, 0), (1, 1, 1, 0), and (0, 1, 
0, 1) on the space. 
 
Frequency-based VSM 
The Boolean model is simple and straight forward since it 
immediately matches the computer-based Boolean algebra. 
However, the Boolean model is limited in that the relevance of 
a term in a document is a binary decision (i.e. either term 
occurs or not). It doesn’t cater for the level of importance of 
the term in a document, e.g. more frequent terms in a 
document may be more important. 

Thus, we usually modify the model to use word 
frequencies. In this case, the ijth entry in the term-document 
matrix represents the frequency of the ith term in the jth 
document. This provides more information about terms. For 
example, using the immediate above example, the term-
document matrix using frequencies is 
 
 
 
 
 
The difference is that the third term (infant) occurs twice in the 
second document. 

2.2: Definition of Similarity Measure 
We have seen from above that in VSM’s space-based view, a 
document will be a data point in a high dimensional space, 
whereby each term is an axis of the space. Consequently in a 
distance-based approach, the distance between two points in 
the space represents the measure of (dis)similarity between the 
two documents. This means the length of the straight line 
between the two points, i.e. the Euclidean measure. 

Alternatively, we can use the cosine measure, whereby 
the similarity between documents x and y can be expressed as 
the cosine of the angle between the two document vectors. 
Thus, the distance measure is 

cos(x,y)=(x.y) / (||x|| ||y||) 
whereby (x.y) is the dot product of the two vectors x and y, 
and ||x|| is the length of vector x. 
 
3. CLUSTERING USING K MEANS 

3.1: The Traditional K Means Algorithm 
The K-Means algorithm is among the few most popular 
clustering algorithms, and was developed by J. MacQueen in 
1967. It’s a distance-based algorithm. It‘s a flat-type (or 
partitioning) clustering algorithm, meaning that the produced 
clusters are one-level (i.e. un-hierarchical). The above 
approach (in section 2) is implemented by K Means as; 
• Document representation: K Means converts the text 

documents into a VSM (structured) form. 
• Definition of similarity measure: It measures similarity 

between two text documents as the Euclidean measure or 
the cosine measure of their two points in the VSM. 

1    1    0 
1    1    1 
0    1    0 
0    0    1 

A = 

1    1    0 
1    1    1 
0    2    0 
0    0    1 

A = 
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• The clustering logic (or algorithm): Is as follows. 
1. Choose the number of clusters, k. 
2. Randomly generate k clusters and determine the 

cluster centers (centroids), where a cluster’s 
centroid is the mean of all points in the cluster. 

3. Repeat the following until no object moves (i.e. no 
object changes its cluster) 
(i) Determine the Euclidean distance of each 

object to all centroids. 
(ii) Assign each point to the nearest centroid. 
(iii) Re-compute the new cluster centroids. 

Thus, according to [29], the K Means algorithm assigns 
each point to a cluster whose center (also called centroid) is 
nearest. The centroid of a cluster is the average of all the 
points in the cluster based on the Euclidian distance measure. 

Thus, in each loop of step 3 above, the algorithm aims at 
minimizing the following function for k clusters and n data 
points. 
j=k i=n 

J=∑  ∑  ||xi-cj|| 2 
j=1 i=1        (1) 
where ||xi-cj|| is a choosen distance measure (e.g. Euclidean 
measure) between data point xi from cluster cj. 
 
(i) Example 
We could apply the K Means algorithm on the VSM produced 
in section 2.1 above, but we won’t be able to illustrate the 
clustering graphically since there are four terms in the matrix 
and hence four dimensions in the space-based view. Therefore 
for simplicity, let’s use another example that contains only two 
terms, so that we illustrate the clustering graphically on the xy 
plane. 

Assume four documents containing two terms, whereby 
the first term occurs with frequencies 1, 0, 4, and 6 
respectively in the documents, while the second term occurs 
with frequencies 2, 2, 1, 0 respectively. We represent the 
documents in VSM using the term-document matrix 
 
 
 
We choose initial number of clusters k=2, and the first two 
points (1, 2), (0, 2) as the initial first and second centroids. 
 
(a) First loop 
We compute the distance matrix (containing distance of each 
point from each centroid) to be 
 

 
 

The first row of D shows the distance of each point from 
the first centroid, and the second row shows the distance of 
each point from the second centroid. 

Here, the point (1, 2) has distance ((1-1)2+(2-2)2)1/2=0) 
from centroid (1, 2), and distance ((1-0)2+(2-2)2)1/2=1)  from 
centroid (0, 2). 

The point (0, 2) has distance ((0-1)2+(2-2)2)1/2=1) from 
centroid (1, 2), and distance ((0-0)2+(2-2)2)1/2=0)  from 
centroid (0, 2). 

The point (4, 1) has distance ((4-1)2+(1-2)2)1/2=3.16) 
from centroid (1, 2), and distance ((4-0)2+(1-2)2)1/2=4.12)  
from centroid (0, 2). 

The point (6, 0) has distance ((6-1)2+(0-2)2)1/2=5.39) 
from centroid (1, 2), and distance ((6-0)2+(0-2)2)1/2=6.33)  
from centroid (0, 2). 

We then form the clusters by assigning each point to its 
nearest centroid. We form the group matrix G by assigning 
each point value 1 (if it should belong to that cluster), and 
value 0 if not. Note that first row represents the first cluster, 
and second row the second cluster. E.g. the third point (4, 1) 
has distance 3.16 from the first centroid, and distance 4.12 
from the second centroid, meaning it’s nearer to the first 
centroid. So we set the third column of G below to (1, 0). 
Thus, 
 
 
 

This shows that first, third and fourth points belong to the 
first cluster, while the second point to the second cluster. 

We then recompute the centroid of each cluster as the 
average of the points in that cluster. Thus, first centroid is 
((1+4+6)/3, (2+1+0)/3) which is (3.67, 1), while the second 
centroid is (0, 2). 
 
(b) Second loop 
We start the second loop of the algorithm and compute D to be 
 
 
 

Here, the point (1, 2) has distance ((1-3.67)2+(2-
1)2)1/2=2.85) from centroid (3.67, 1), and distance ((1-0)2+(2-
2)2)1/2=1)  from centroid (0, 2). 

The point (0, 2) has distance ((0-3.67)2+(2-1)2)1/2=3.80) 
from centroid (3.67, 1), and distance ((0-0)2+(2-2)2)1/2=0)  
from centroid (0, 2). 

The point (4, 1) has distance ((4-3.67)2+(1-1)2)1/2=0.33) 
from centroid (3.67, 1), and distance ((4-0)2+(1-2)2)1/2=4.12)  
from centroid (0, 2). 

The point (6, 0) has distance ((6-3.67)2+(0-1)2)1/2=2.54) 
from centroid (3.67, 1), and distance ((6-0)2+(0-2)2)1/2=6.33)  
from centroid (0, 2). 

Thus, the first point changes into the second cluster since 
it’s now distance 2.85 from the first centroid (3.67, 1) 
compared to distance 1 from the second centroid (0, 2). We 
therefore compute the new group matrix to be 
 
 

 
We then recompute the centroid of each cluster as the 

average of the points in that cluster. Thus, first centroid is 
((4+6)/2, (1+0)/2) which is (5, 0.5), while the second centroid 
is ((1+0)/2, (2+2)/2) which is (0.5, 2). 
 
(c) Third loop 
We start the third loop of the algorithm and compute D to be 
 
 

 
Here, the point (1, 2) has distance ((1-5)2+(2-

0.5)2)1/2=4.27)  from centroid (5, 0.5), and distance ((1-
0.5)2+(2-2)2)1/2=0.5) from centroid (0.5, 2). 

The point (0, 2) has distance ((0-5)2+(2-0.5)2)1/2=5.22)  
from centroid (5, 0.5), and distance ((0-0.5)2+(2-2)2)1/2=0.5) 
from centroid (0.5, 2). 

2.85      3.80     0.33     2.54 
 1            0         4.12     6.33 D2 = 

0    0    1    1 
1    1    0    0 

 

G2= 

1    0    1     1 
0    1    0     0 

 

G1 = 

1    0     4   6 
2    2     1   0 

 

0    1    3.16     5.39 
 1    0    4.12     6.33  

A = 

D1 = 

  4.27     5.22    1.11     1.11 
0.5       0.5     3.64    5.85   D3 = 
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The point (4, 1) has distance ((4-5)2+(1-0.5)2)1/2=1.11)  
from centroid (5, 0.5), and distance ((4-0.5)2+(1-2)2)1/2=3.64) 
from centroid (0.5, 2). 

The point (6, 0) has distance ((6-5)2+(0-0.5)2)1/2=1.11)  
from centroid (5, 0.5), and distance ((6-0.5)2+(0-2)2)1/2=5.85) 
from centroid (0.5, 2). Thus, 
 
 
 

And so there is no change of the clusters’ grouping, and 
so we stop. 
 
(d) Conclusion 
The first two points (thus documents) i.e. (1, 2), (0, 2) are in 
the second cluster while the last two points (documents) i.e. (4, 
1), and (6, 0) are in the first cluster. 
 
(e) Illustration of the clustering using space-based view 
Our original data was (1, 2), (0, 2), (4, 1), and (6, 0), i.e. with 
term-document matrix 
 
 

 
Since there are two terms, we have a two dimensional 

space whereby the x axis represents the first term while the y 
axis represents the second term. Each document is a point on 
the xy space. Note that; 
• Document points are shown using 
• Centroids are shown using      or      (if they are also data 

points) 
• Points inside a cluster are enclosed using 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure. 1 First loop of the clustering 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2 Second loop of the clustering 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 3 Third loop of the clustering 
 
(ii) Strengths and Limitations of the K Means Algorithm 
The above example helps us see clearly how the K Means 
algorithm works, so that we can easily observe its strengths 
and limitations. The advantage of the K Means algorithm is 
that it’s simple to understand and implement, just as the above 
example uses straight forward Euclidean calculations and 
elementary data storage using matrices. Secondly, the K-
means algorithm is efficient in memory requirements since the 
system only needs to store the data points and their distances 
from centroids (using matrices A and D), the membership of 
data points to the clusters (using matrix G), and some variables 
to hold centroids. According to [10], K Means is fast for small 
document sizes. According to [32], the time complexity of the 
K Means algorithm is O(knI), where k is the number of 
clusters, n the number of objects and I the number of iterations 
(which is dependent on the stopping criterion). Thus, the 
algorithm is very efficient. It’s also scalable. 

Its limitation is that the user must specify the initial 
number of clusters before clustering. It is not trivial for the 
user to determine a reasonable number of clusters depending 
on the number of documents. For instance in the previous 
example, we were forced to choose randomly, k=2. ‘A major 
problem with partitioning algorithms is selecting an 
appropriate number of output clusters’ [19]. Secondly, it 
doesn’t include dimension reduction. Our example had only 
four documents and two terms. But practical applications can 
involve hundreds of web documents, with tens of thousands of 
terms, meaning huge matrices. Thirdly, according to [22], 
there is no description about the cluster’s contents (i.e. labels 
of clusters), so the contents can’t be utilized more efficiently. 
Following the above examples (in sections 2 and 3), it’s hard 
to determine clear-cut topics of the obtained clusters. Fourth, 
according to [35], the K Means algorithm is too sensitive to 
outliers (i.e. unusual data values e.g. too big values as a result 
of errors). The outliers will substantially distort the 
distribution of data (i.e. affects the mean a lot). Also, when the 
data points are few, it’s more likely to get different clustering 
for different initial centroids. Lastly, according to [17], K 
Means algorithm may not give good results when features are 
more, and generally, the results vary quite a bit from one run 
to another. And generally, K Means doesn’t perform well 
when clusters are of different sizes, densities, and irregular 
shapes as illustrated below. 
 

0   0   1    1 
1   1   0    0 

 

G3 = 

 
 

1    0     4    6 
2    2     1    0 

 

A = 

Loop 1 
Centroids: 1st (1, 2), 2nd (0, 2) 

 
             
             
             
             
             
             

    1        2        3        4        5         6 
   

1 

2 

Loop 2 
Centroids: 1st (3.67, 1), 2nd (0, 2) 

 
             
             
             
             
             
             

   1        2         3        4        5        6 
   

1 

2 

Loop 3 
Centroids: 1st (5, 0.5), 2nd (0.5, 2) 

 
             
             
             
             
             
             

    1        2        3         4        5         6 
   

1 

2 
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Illustration. 1  Groups of different shapes, densities (hard to detect in K 
Means) and outlier 

 
2 groups    2 groups 

 
An outlier point 

 
The two obvious groups of points in each pair are of 

different shapes and densities. Thus, some points in a group 
could be nearer (in distance) to the center (or centroid) of the 
other group (or cluster) rather than theirs, based on the K 
Means algorithm. Thus, it’s very hard for the K Means 
algorithm to detect the clusters since it’s purely based on 
distance measurements. And so, wrong clustering could 
happen as illustrated below. 
 
Illustration. 2  Wrong clustering by K Means 

 
2 clusters    2 clusters 

 
Also, some outlier points as the one shown at the bottom 

right corner of the second pair of clusters makes calculations 
of the mean distances of points from their centroids distorted. 

In an attempt to improve the K Means algorithm, other 
similar algorithms have been developed. All these can be 
considered as the K Means family. They include the following. 

3.2. The K Medians Algorithm 
The K Medians algorithm works just like the K Means 
algorithm, except that we compute the median instead of the 
mean of each cluster as the centroid. 

As a result, there is less effect of extreme values (i.e. 
outliers). But, the algorithm suffers from the other limitations 
of the K Means algorithm. 

3.3. The Bisecting K Means Algorithm 
Whereas the K Means algorithm splits a cluster into k sub 
clusters, the Bisecting K Means algorithm splits a cluster into 
two sub clusters in a divisive hierarchical manner, but using 
the K Means-type of clustering. In other words, Bisecting K 
Means works just like K Means, except that k=2, and it 
clusters in a divisive-hierarchical manner. The documents are 
initially partitioned into two clusters. The algorithm iteratively 
selects and bisects each one of the leaf clusters until k clusters 
are reached. Thus, the algorithm is basically as follows. 
1. Receive the documents set as a cluster. 
2. Select a cluster to split. 

3. Perform K Means algorithm on the selected cluster with 
k=2. 

4. Go back to step 2 and continue, stop when there are k 
clusters. 
According to [22], this algorithm is more accurate and 

efficient than the traditional K Means algorithm. Also, 
according to [32], the time complexity of the Bisecting K 
Means algorithm is O(nI log k), which is less than the K 
Means algorithm since it does not compare all objects to all 
cluster centroids. ‘If the number of clusters is large, then 
bisecting K-means is more efficient than the regular K-means 
algorithm. Hence, Bisecting K-means gives better results for 
larger data sets’ [17]. 

However, it still suffers the limitations of the K Means 
algorithm, i.e. specifying the initial number of clusters, lack of 
dimension reduction, and lack of description about the 
cluster’s contents. 

3.4. The K Medoids Algorithm 
This is an extension of the K-means algorithm, and is still a 
partioning-based algorithm. As opposed to the K Means 
algorithm whose centers (or centroids) may not be data points 
(centroids are obtained as the mean value of all data points in a 
cluster, thus centroids may not be data points), the K Medoids 
algorithm chooses data points as centers (medoids). I.e., each 
cluster is represented by one of the objects in the cluster (i.e. 
the representative object). A medoid is a data point that is the 
most centrally located in a cluster, meaning that its average 
dissimilarity to all other objects in the cluster is the minimum 
(compared to the average of the other points). This makes the 
K Medoids algorithm be less sensitive to outliers than the K 
Means algorithm. [13] explains that the algorithm works as 
 

We first set a random representative object for each clustering 
to form k clustering of n data. Then according to the principle 
of minimum distance, other data will be distributed to 
corresponding clustering according to the distance from the 
representative objects. 

 
According to [35], instead of taking the mean value of 

the objects in a cluster as a reference point, we take the most 
centrally located object in a cluster as the medoid. 

The K Medoids algorithm is more accurate than the K 
Means algorithm, because of the deeper computations of the 
representative objects. According to [9], the K Medoids 
algorithm is more robust than K Means algorithm. According 
to [41], the K Medoids algorithm uses representative objects 
as reference points instead of using the mean value of the 
objects in each cluster, and this makes the algorithm less 
sensitive to outliers. According to [44], the K Medoids 
algorithm has a higher accuracy of pattern matching than the K 
Means algorithm. 

However, this algorithm is less efficient than the K 
Means algorithm (the step of computing medoids – 
specifically their dissimilarity to all other objects is harder 
than computing means), and also retains other limitations of K 
Means (except the problem of outliers). According to [9], 
although K Medoids algorithm is more robust than K Means 
algorithm, it is less efficient than K Means. According to [44], 
the limitations of the K Means algorithm are retained by K 
Medoids (except the problem of outliers), and in addition, the 
adoption of new particle computing rules by K Medoid’s 
increases the computation time to (k(n-k)2). From the 
experiment done by [41], it was observed that the K-Means 

cluster 
A 

cluster 
B 

cluster B 

cluster A 



Francis Musembi Kwale, International Journal of Advanced Research in Computer Science, 4 (9), July–August, 2013,27-34 
 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                    32 

algorithm is more efficient for smaller data sets than the K-
Medoids algorithm. From the experiment done by [40], it was 
concluded that the efficiency of the K Means algorithm is 
better than the one of the K Medoids algorithm. 

(i)  The Partitioning Around Medoids (PAM) Algorithm 
This is a ‘realization’ of the K Medoids algorithm. It was 
developed by Kaufmann and Rousseeuw in 1987. ‘The process 
operates by swapping one of the medoids with one of the 
objects iteratively such that the total distance between non-
selected objects and their medoid is reduced’ [8]. The 
computational complexity of the algorithm according to [8] is 
O((1 + β)k(T − k) 2) - based on the number of partitions per 
object, or O((1+β)k2(T −k)2) - based on the number of distance 
calculations, (one partition per object is equivalent to k 
distances calculations). Here, k, β and T are number of 
medoids, the number of successful swaps for all samples 
tested and the total number of objects, respectively. 

It can thus, be summarized as follows. 
1. Select by random k medoids from the given n data 

points. 
2. Assign each data point to the closest medoid using a 

measurement metrix, e.g. the Euclidean measurement. 
3. For each medoid m 

For each non-medoid data point c 
Swap m and c and compute the total cost of 
the configuration. 
Select the configuration with the lowest cost 
(i.e. lowest dissimilarity). 

4. Repeat steps 2 to 3 until there is no change in the 
medoids. 

 
Example 
Consider repeating the above clustering example using PAM 
instead of K Means. Remember the original data was (1, 2), (0, 
2), (4, 1), and (6, 0), i.e. with term-document matrix 
 
 
 

The K Means method produced the centroids (1, 2), (0, 
2) originally, (3.67, 1), (0, 2) in the first loop, and (5, 0.5), 
(0.5, 2) in the second loop. And centroids (3.67, 1) and (5, 
0.5), (0.5, 2) are not data points. 

However using PAM, each centroid (medoid) in each 
loop must be a data point, i.e. the only possible medoids are 
(1, 2) or (0, 2) or (4, 1) or (6, 0). The clustering of these four 
data points will be as follows. 
1. Assume k=2, and let initial medoids be (1, 2), (0, 2). 
2. Assign the points (4, 1), (6, 0) to their nearest medoid. 
3. For medoid (1, 2): Swap (1, 2) with (4, 1), then with (6, 

0), and get the best configuration. 
For medoid (0, 2): Swap (0, 2) with (4, 1), then with (6, 
0), and get the best configuration. 

4. Assign the resulting non-medoid data points to their 
medoids (from the above best configurations). E.g. 
assuming the best configuration results to medoids (4, 1) 
and (0, 2), we assign points (1, 2), (6, 0) to either of the 
two medoids. 

5. Iterate steps (iii), (iv) using the new medoids (resulting 
every time) until there is no change in medoids. 

 

Though PAM improves the K Medoids algorithm, it’s 
clearly inefficient from the above-mentioned complexity (out 
of the nested loops in steps 3, 4 above). 

(ii) CLARA (Clustering LARge Applications) 
This is yet another realization of the K Medoids algorithm, and 
it’s a modification of PAM. 

It was developed by Kaufmann and Rousseeuw in 1990. 
‘CLARA reduces the computational complexity by drawing 
multiple samples of the objects and applying the PAM 
algorithm on each sample’ [8]. According to [4], instead of 
taking the whole set of data into consideration, a small portion 
of the actual data is taken to represent the whole data, and 
medoids are then taken from this sample. The assumption here 
is that if the sample is representative (or taken in fairly random 
manner), then the medoids of the sample should approximate 
the medoids of the entire dataset (i.e. the sample should 
closely represent the original data). But to improve the 
approximation, multiple samples are taken. The clustering 
accuracy is measured by the average dissimilarity of the 
objects. 

The steps according to [8] are: 
Step 1: Call the PAM algorithm with a random sample, s 

objects from the original set of T objects. 
Step 2: Partition the T objects based on the k medoids 

obtained from previous step. Update the better 
medoids based on the average distance of the 
partition. 

The computational complexity of the CLARA algorithm 
according to [8], is O(q(ks2 + (T − k)) + βks 2) based on the 
number of partitions per object or O(q(k2s2 + k(T − k)) +  
βk2s2) based on the number of distance calculations, where q, 
s, k, β and T are the number of samples, object size per 
sample, number of medoids, the number of successful swaps 
for all samples tested and the total number of objects, 
respectively. ‘Clearly, the CLARA algorithm can deal with a 
larger number objects than can PAM if s<= T’ [8]. And 
generally, CLARA is more efficient than PAM in large 
number of objects. According to [27], CLARA is more 
efficient than PAM in large data sets. 

Thus, the advantage of CLARA is that it improves 
efficiency. But the limitation is that its effectiveness depends 
with the sample size (the size should be relatively high for 
good effectiveness). But high sample sizes reduce the 
efficiency of the algorithm (i.e. tradeoff between effectiveness 
and efficiency). According to [4], CLARA can’t find the best 
clustering if any sampled medoid is not among the best k 
medoids. Thus, in order to address this tradeoff issue, the 
CLARANS algorithm was developed. 

(iii) CLARANS (Clustering Large Applications based on 
RANdomized Search) 
CLARANS is a modification of CLARA. It was developed by 
[27] in 1994. According to [4], CLARANS combines the 
sampling technique with PAM. 

The CLARANS research considers PAM and CLARA 
clustering as a search graph, and tries to improve the clustering 
graphically (thus obtaining CLARANS). According to [27], a 
set of k objects in the graph (i.e. a set of medoids) is a node. 
All nodes in the graph will represent the set of all possible 
medoids (each data object is a possible medoid). And two 
nodes will be said to be neighbors if their sets differ by only 
one medoid. Consequently, each node will have k(n-k) 
neighbors, whereby n is the total number of objects. Each 
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node can be considered as a clustering since it contains k 
medoids, and so can be assigned a cost which is the total 
dissimilarity between every object and the medoid of its 
cluster. 

To illustrate this, assume clustering the data 2, 6, 4, 8 
into two clusters. Here, n=4, k=2. The set of all possible 
medoids (or the graph’s nodes) is (2, 6), (2, 4), (2, 8), (6, 4), 
(6, 8), (4, 8). The neighbors of (2, 6) are: (2, 4), (2, 8), (6, 4), 
(6, 8). Neighbors of (2, 4) are: (2, 6), (2, 8), (6, 4), (4, 8). Each 
of these two nodes have 4 neighbors which using the above 
formula is k(n-k)=2(4-2)=4, and so should be the other four 
nodes above. The idea with this formula is that a node has k 
objects (drawn from the n objects), e.g. (2, 6) has 2 objects 
drawn from the 4 given objects (i.e. 2, 6, 4, 8). And since a 
neighbor of a node is the one with only one different object, 
the neighbors of a node can be gotten by combining each of 
the k objects in the node with each of the other objects not in 
this node, i.e. the n-k other objects (thus, neighbors of (2, 6) 
are gotten by combining each of 2 and 6 (k objects) with each 
of 4 and 8 (n-k objects), i.e (2, 4), (2, 8), (6, 4), (6, 8)). 

Another illustration is clustering 2, 6, 4, 8, 9, 7 into 3 
clusters. The nodes are (2, 6, 4), (2, 6, 8), (2, 6, 9), (2, 6, 7), (2, 
4, 8), (2, 4, 9), (2, 4, 7), (2, 8, 9), (2, 8, 7), (2, 9, 7), (6, 4, 8), 
(6, 4, 9), (6, 4, 7), (6, 8, 9), (6, 8, 7), (6, 9, 7), (4, 8, 9), (4, 8, 
7), (4, 9, 7), (8, 9, 7). The neighbors of (2, 6, 4) are  (2, 6, 8), 
(2, 6, 9), (2, 6, 7), (2, 4, 8), (2, 4, 9), (2, 4, 7), (6, 4, 8), (6, 4, 
9), and (6, 4, 7). I.e. node (2, 6, 4) has 9 neighbors, which can 
also be gotten as k(n-k)=3(6-3)=9 neighbors. 

Here, PAM is viewed as a search for a minimum in this 
graph whereby, at each step, all neighbors of the current node 
are examined. The neighbor which corresponds to the deepest 
descent in cost is chosen as the next solution. CLARA’s 
clustering is thus, viewed as a modification of this so that we 
don’t search all neighbors of a node, but a sample of them. 
CLARANS further modifies this, such that instead of drawing 
a sample of nodes at the beginning of a search (as in CLARA), 
we draw a sample of neighbors in each step of a search, i.e. 
CLARANS draws a sample of neighbors dynamically. The 
benefit is that we do not confine a search to a localized area. 
As a result CLARANS produces higher quality clustering than 
CLARA, and is also more efficient. 

3.5. The Kernel K Means Algorithm 
The Kernel K Means algorithm is an extension of the K Means 
algorithm meant to address the limitation of the K Means 
algorithm of not being able to cluster irregular shapes (or non-
linear data). The idea behind the algorithm is to map the 
original data to a feature space by a non-linear transformation, 
then apply the K Means algorithm on the resulting space. 
According to [39], 
 

this means that nonlinearly separated clusters in input space can 
be obtained, overcoming the limitation of the K Means of 
finding only linearly separable clusters. This results in linear 
separators in feature space which correspond to nonlinear 
separators in input space. 

 
The algorithm applies the same idea as the K Means 

algorithm, but instead of using the Euclidean distance 
measurements as in K Means, it uses the kernel method. 

The strength of the Kernel K Means algorithm is that it’s 
able to identify the non-linear structures. Consequently, it’s 
suitable in clustering real life data. 

A limitation of the algorithm is that it’s less efficient than 
the K Means algorithm. 
 
4. CONCLUSIONS 

 
The K Means algorithm and its variants are simple and 
efficient to use, despite some weaknesses. It is recommended 
that an approach combining the K Means (or its variant) with 
another approach of text clustering be considered so as to take 
the advantages of both. 
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