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Abstract: In classical Genetic Algorithm the nature of mutation is random so it only serves the purpose of adding diversity to the current 
generation and to avoid problems like premature convergence. In this paper it is shown that how mutation can be made adaptive so that when it 
occurs, it mutates the chromosome in a way so as to produce overall healthier chromosomes. The theory of adaptive mutation proposes that 
mutation may occur as a direct consequence of stress in the environment so that it can adapt to it. In this paper the mutation will follow up the 
theory of adaptive mutation and will try to mutate the chromosomes in a way so that it produces better results. 
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I. INTRODUCTION  

Traditional Genetic Algorithm uses mutation operator 
that involves a probability that a bit of a chromosome will be 
changed from its original state. This type of mutation 
involves randomness and adds diversity to the current 
generation of the population. This type of mutation mimics 
the random mutation that occurs in the nature. More can be 
read about classical Genetic Algorithm here [1]. 

In this paper a new approach towards mutation is 
introduced which follows the theory of Adaptive mutation. 
This paper introduces how mutation is made adaptive by 
detecting a pattern among the high performing chromosomes 
and then mutating the current population according to it.  

II. ADAPTIVE MUTATION 

The theory of Adaptive mutation proposes that mutation 
may occur as a direct consequence of stress. This mutation 
that may occur might allow adaptation to that stress. 

Adaptive mutation can be simply understood, as some 
phenotypic feature that may undergo some external pressure, 
will learn to adapt to it permanently with course of time 
through mutation. More can be read about biological aspect 
of adaptive mutation here [2]. 

III. THE PROBLEM USED  

To test the adaptive mutation design, the famous 
Travelling Salesman Problem is used. 

In the algorithm 26 cities are generated and a randomly 
generated distance is allocated between each city. The 
allocated distances are symmetric. The 26 cities are labeled 
from A-Z. Chromosome length is 26. Each chromosome 
represents a possible route. Each chromosome contains all 
26 cities with no repetition, as shown in Figure-1 the 
chromosome constitutes a valid route. 
 

 
Figure 1.   Example of a Chromosome 

IV. ADAPTIVE DESIGN 

To accomplish adaptive mutation a detectPattern() 
function is used which collects data of healthy chromosomes 
from each generations till the mutation and then detects a 
pattern among them. Finally when the mutation occurs it 
mutates the low performing chromosomes to resemble the 
detected pattern and hence improves the performance of the 
algorithm.  

A. detectpattern(): 
This function follows the following algorithm to compute 

a healthy pattern. 
Process: P1 

a. Store fittest chromosome of each generation in a 
multidimensional array  

Repeat P1 for each generation  
Process: P2 

b. If (Mutation) 
a) Find city c that repeats itself most in ith 

column 
b) Store c in an array of size 26 at ith 

position 
Repeat P2 for i in range (0,25)   
 
After completion of this algorithm a single dimension 

array will be obtained which will contain all the position of 
the cities that can produce better results. 

B. Mutation Operator: 
The mutation operator causes the main mutation. The 

adaptiveMutation() function is used in the code to implement 
the adaptive mutation operator. In this function random 
numbers are generated from (0,25) which select the position 
of cities from array such that no same city is selected. 

It performs mutation by inserting cities obtained from 
array into the chromosomes of current generation at the same 
position as they were in the array. Cities in the chromosome 
those are same as that of the ones, which are inserted in the 
chromosome, are simply deleted so that a proper path is 
created without any repetitive city.  

The mutation probability for the algorithm is set to 0.50. 
As the population is sorted from highest to lowest performing 
chromosome, so only half of the population is affected. 
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The mutation probability is also adaptive. It is adaptive in 
a sense that mutation will only affect those chromosomes that 
are not performing well and will leave the high performing 
ones unaltered. More can be read about it here [3]. 

V. TESTING  

To test the new operator, its performance is compared to 
traditional mutation operator in Genetic Algorithm. The 
program runs normally till the point where mutation has to 
occur and then it splits into two parts. These parts run the 
instances of the algorithm, one with adaptive mutation and 
other one with traditional mutation. In this manner both 
mutations act on the same initial population. This makes the 
testing more efficient. 

VI. IMPLEMENTATION 

Code is implemented by keeping functional approach in 
mind. Traditional Genetic Algorithm used in my code uses 
following main functions. 
a. initialPopulationGenerator(): Simple function that 

generates random initial population. The initial size of 
the population is set in the beginning. In this paper the 
initial population size is thousand chromosome.    

b. selection():  It performs three functions. Firstly, it 
computes the fitness of each chromosome and creates a 
new data structure that contains all the fitness value of 
each chromosome. Secondly, it sorts the population 
from highest to lowest performing chromosome. 
Thirdly, it removes the low performing chromosomes.  

c. orderedCrossover():  When dealing with problems like 
Travelling Salesman it should be kept in mind that any 
changes that are made in chromosome should not cause 
repetiton among the cities in a chromosome. To 
overcome this constraint this function performs 
ordered crossover on the current generation of 
population. 

d. traditionalMutation(): This function performs  
traditional mutation. Swap mutation is used, as in 
travelling salesman problem we have to make sure that 
in the chromosome no repetition occurs  as it would be 
an invalid path. In swap mutation two genes are 
randomly selected and then their positons are 
interchanged.   

e. setcities(): This function is used to generate random 
cities labelled from A-Z. The cities generated are 
assigned random distances. The distance allocated are 
symmetric. In this way this function creates a virtual 
database of cities and their distances. 

Only initialPopulationGenerator() and setcities() are 
called once in the beginning. All the other functions in the          
algorithm are inside a loop. A single iteration represents a 
current generation and the genetic operation that are 
performed on it.  

There is no special fitness operator used but there is a 
function chromosomeDecoder(), which accepts a 
chromosome, decodes it and calculates the fitness associated 
with it and returns the fitness value. The fitness value is 
calculated simply by adding the distances between the cities 
hence the total distance covered in route represents the 
fitness of the chromosome. Smaller distances means better 
performance.  

Algorithm goes normally till the mutation is 
encountered. After that the algorithm splits into two parts. In 
one instance adaptive mutation is applied and in other 
traditional mutation.  Both instances of algorithms run 
parallel. This makes it easier to evaluate and compare the 
performance and also as both the mutation operators are 
applied on the same generation of the population, which in 
turn makes the testing more accurate.  

VII. PERFORMANCE 

Figure 2 represents the performances of both the 
algorithms, traditional and adaptive, over each successive 
generation after mutation has occurred. It can be clearly seen 
from the figure that the new operator performs better than 
the traditional operator over each successive generation.  

The adaptive mutation operator not only improves the 
overall fitness of the population but also the low performing 
chromosomes are affected and perform better. As it can be 
seen from the figure that algorithm converges in fewer 
generations as compared to traditional algorithm.   

 
Figure 2.  Maximum fitness comparison between traditional and adaptive 

mutation. 

VIII. CONCLUSION 

This paper introduced a completely new approach 
towards mutation in Genetic Algorithm. The adaptive 
approach presented in the paper opens up a lot of scope for 
future work on both mutation operator and way the selective 
pressure is implemented in algorithm. It is notable how the 
algorithm converges in fewer generations as compared to 
traditional approach. After rigorous testing and analysis of 
result it can be seen that algorithm can perform much better 
with adaptive approach towards mutation rather than just 
making it random as done in traditional mutation.  

This approach helps to solve one of the major pitfalls of 
Genetic Algorithm of mutation being random. Now the 
change that will occur in the population is not random but 
controlled by the overall performance of the algorithm. A 
good feature of new operator is that it will only change those 
chromosomes that are not performing well whereas the 
healthy chromosomes will be left unchanged. All these 
features increase overall efficiency of the algorithm.  
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