International Journal of Advanced Research in Computer Science
RESEARCH PAPER

Available Online at www.ijarcs.info

UNICODE and Color Integration Technique for Encryption and Decryption

Anil Kumar
Deptt. of computer science
TIT\&S BHIWANI, Haryana
Yadavanil82@gmail.com

Ritu yadav
Deptt. of Electronics \& Communication
TIT\&S BHIWANI, Haryana
Ritu12june@gmail.com

Rajesh Kumar
Senior Programmer Deptt. of computer science
TIT\&S BHIWANI, Haryana
rajeshgoyal@titsbhiwani.ac.in

Abstract

A w ide v ariety of t echniques have been e mployed for e ncryption a nd de cryption but c ryptanalysis has simultaneously c racked these encryption techniques from time to time. UNICODE is one of the consistent representation a nd ha ndling of text expressed in most of the world's writing systems. The latest version of UNICODE consists of a repertoire of more than 107,000 characters covering 90 scripts, a set of code charts for visual reference, an encoding methodology and set of standard character encodings, an enumeration of character properties such as upper and lower case, a set of reference data computer files, and a number of related items. This paper introduces a new technique and an algorithm that focuses on cryptography by using UNICODE and colors available in the universe (supported by computer).

Keywords: Unicode, Encryption, Decryption, Software Localization and Cryptanalysis.

I. INTRODUCTION

The rapid growth of internet in the recent days a nd the wide s pread availability of n etworks have le ad to t he development of powerful and creative applications. Almost all the software applications are becoming online, not to mention the G oogle D ocs a nd Microsoft O ffice Live. H ence, t he networks have become more open and accessible .Consequently, an adversary is not limited to e avesdropping but may take a more important role by activities like a Man in the Middle Attack. The last decade witnessed a lot of the seaattacks [1]. Therefore, the security for the huge amount of data transferred is at stake. The science of Cryptology dates back to Caesar's t ime. S ince t hen, av ariety of h euristics have b een proposed for secured communication. But, cryptanalysis ha s simultaneously cracked these encryption techniques from time to time. Hence, the fundamental task of cr yptography is not only to protect the secrecy of messages transmitted over public communication lines b ut a lso to resist s uch c ryptanalytic attacks which tend to evolve with the passage of time. The Data e ncryption techniques c an be b roadly cl assifieds symmetric and asymmetric key cryptography [2].

In symmetric key c ryptography, the same key is us ed by the s ender and t he receiver f or e ncryption a nd decryption respectively. The representative al gorithms oft his a pproach are AES, TDES,RC5 [3] and the likes. A symmetric or public key cryptography uses two keys namely, private key which is kept by the receiver and public key which is announced to the public [4]. Cryptosystems like RSA, PGP and ECC fall under this category. Other recent data encryption techniques include Quantum Cr yptography [5]. A lthough, a w ide v ariety of
techniques have been employed for encryption and decryption, the us e of a m ultilingual approach f or t hes ame i s not prevalent. Motivated by this, here, we propose a novel algorithm that focuses on encryption of plain text over a range of 1 anguages s upported by Unicode [6]. The use of mapping techniques m akes the a lgorithm fast, e fficient and ea sier to implement. Further, the r eplacement strategy used ensures better security. The rest of the paper is organized as follows. In S ection II w e pr esent t he p roposed a lgorithm w ith examples. N ext, in Section III we di scuss a nd illustrate the functioning of the algorithm .Conclusion and future works are mentioned in Section IV.

A. What is Unicode?:

Fundamentally, computers deal with numbers. They store letters and other characters by assigning a unique number for each one. Before Unicode was invented, there were hundreds of di fferent en coding systems. There was no single encoding system that could contain enough characters: for example, the European Union alone requires several different encodings to cover a ll its 1 anguages [7]. Even for a s ingle language 1 ike English, no single e ncoding w as adequate for all the letters, punctuation, and technical symbols in common use.

These e ncoding s ystems als oc onflict w ith one another. That is, two en codings c an us e the s ame number f or two different characters, or us e di fferent num bers for the same character. A ny gi ven computer (especially s ervers) needs to support many di fferent en codings[8]; y et w henever da ta is passed between di fferent e ncodings or p latforms, s uch data always run the risk of corruption. Unicode provides a un ique number for e very character, which is inde pendent from the platform, program, and language .

B. User Defined Codes (UDC):

According to the Unicode standard, Unicode values range from 0000-FFFF, which contains 65535 characters. Thus each language has its own range of character mapping according to the Unicode standard [10].

II. PROPOSED ALGORITHM

a. Convert the character into its Corresponding Unicode.
b. Convert the Unicode to 16-bit Binary Number.
c. Now A dd 8 -bits to the left of the 16-bit Bi nary N umber and these 8 bits are calculated as follows :
$1^{\text {st }}$ bit can be calculated by XORing the $1^{\text {st }}$ and $16^{\text {th }}$ bit of Unicode.
$2^{\text {nd }}$ bit can be calculated by XORing the $2^{\text {nd }}$ and $15^{\text {th }}$ bit of Unicode.
$3^{\text {rd }}$ bit can be calculated by XORing the $3{ }^{\text {rd }}$ and $14^{\text {th }}$ bit of Unicode.
$4^{\text {th }}$ bit can be calculated by XORing the $4^{\text {th }}$ and $13^{\text {th }}$ bit of Unicode.
$5^{\text {th }}$ bit can be calculated by XORing the $5^{\text {th }}$ and $12^{\text {th }}$ bit of Unicode.
$6^{\text {th }}$ bit can be calculated by XORing the $6^{\text {th }}$ and $11^{\text {th }}$ bit of Unicode.
$7^{\text {th }}$ bit can be calculated by XORing the $7^{\text {th }}$ and $10^{\text {th }}$ bit of Unicode.
$8^{\text {th }}$ bit c an be calculated by X ORing the $8^{\text {th }}$ and $9^{\text {th }}$ bit of Unicode.
a) Now we get a 24 -Bit Binary Number.
b) Convert this 24-bit b inary N umber to H exadecimal number.
c) Now encrypt this new Number with its corresponding color.

A. Encryption:

The text to be encrypted is read character by character and the Unicode value of each is obtained. . Convert the Unicode to 16-bit Binary Number. Now Add 8 -bits to the left of the 16bit Binary Number and these 8 bits are calculated as explained in the a bove a lgorithm. A fter ge tting th e 24 -Bit Bi nary Number. Co nvert this 24 -bit b inary N umber to Hexadecimal number. N ow e ncrypt t his number w ith its c orresponding color.

B. Decryption:

The ci pher text i s s canned co nvert the co lor to its corresponding h exadecimal n umber. After this c onvert th e hexadecimal number to the 24 bit binary number. Remove the 8 starting bits to make the number 16 bit binary number and convert the 16 bit number to corresponding Unicode and then the value of that particular character.

III. EXAMPLES AND DISCUSSION

A. Example of Encryption:

Suppose we have to encrypt a String "Monga".

B. Encryption of ' M ':

a. Unicode of M is $0 \times 004 \mathrm{~d}$.
b. Binary Conversion of this is :0000000001001101
c. 8 bits that are attached to left of this number are :01001101
d. 24 bit number is : 010011010000000001001101
e. Hexadecimal Conversion is : 4D004D
f. Color corresponding to this value is :

C. Encryption of ' \mathbf{o} ':

a. Unicode of o is $0 x 006 \mathrm{f}$.
b. Binary Conversion of this is: 0000000001101111.
c. 8 bits that are attached to left of this are: 01101111
d. 24 bit number is : 011011110000000001101111
e. Hexadecimal conversion is : 6 F 006 F
f. Color corresponding to this value is :
D. Encryption of ' n ':
a. Similarly for n color is :6E006E
E. Encrption of ' g ':
a. Similarly for g color is : 670067

F. Encryption of ' a ':

a. Similarly for a color is : 610061
G. Encrption of "Monga":

H. Decryption of"":

a. Hexadecimal V alue co rresponding t ot his co lor is 4D004D.
b. Binary conversion is 010011010000000001001101 .
c. Take 16 bits from right that is : 0000000001001101
d. Hexadecimal Number corresponding to this is: 004D
e. Value corresponding to Unicode 004D is ' M '.
I. Similarly we can decrypt the whole colors and get the string "Monga":

IV. CONCLUSION AND FUTURE WORK

By us ing different c olors in the un iverse (supported by computer) and UNICODE c haracters, we ca n implement encryption and de cryption. T his pr oposed policyi s ve ry simple to implement. But the future projects will provide high security by using different colors and UNICODE characters.

V. REFERENCES

[1]. Ross J. A nderson, " Why C ryptosystems F ail", Communications of the ACM, New Y ork, U SA, 199 4, pp . 32-40.
[2]. Mulet: A M ultilanguage encryption technique 978-0-7695-3984-3/10 © 20 10 I EEE 2010 S eventh I nternational Conference on Information Technology .
[3]. R.L. Rivest, "The RC5 encryption algorithm", Proceedings of the 1994 Leuven W orkshop o n F ast S oftware E ncryption, Springer-Verlag, 1995, pp.86-96.
[4]. William C. B arker, " Recommendation for t he T riple D ata Encryption Algorithm (TDEA) B lock C ipher", National Institute o fS tandards and Technology, NIST S pecial Publication 800-67, 2008.
[5]. R.W Collins, " Software localization for Internet s oftware, issues a nd methods", S oftware, I EEE, F lorida, U SA, 2002, pp. 74-80.
[6]. P. Wayner, Disappearing Cryptography : Information Hiding: Steganography a nd W atermarking. Morgan K aufmann, 2nd edition, 2002.
[7]. N. F. Johnson and S. Jajodia. S teganalysis of i mges c reated using c urrents teganographys oftware. I nI HW'98 Proceedings of t he I nternational I nformation hiding workshop. April 1998.
[8]. D. R . S tinson, "Cryptography T heory a nd Practice" C RC Press, Inc., 2002.
[9]. IEEE T ransactions on C ircuits and S ystems f or V ideo Technology: Special Issue on A uthentication, Copyright Protection, a nd Information Hiding, V ol. 13, No. 8, A ugust 2003.
[10]. Maram B alajee, "Unicode a nd colors I ntegration tool f or encryption and Decryption", Vol. 3 No. 3 Mar 2011, IJCSE , ISSN : 0975-3397

