
Volume 4, No. 8, May-June 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 31

ISSN No. 0976-5697

A Formalism for Checking Consistency of Component-Based Real-Time Systems

Dr. Jaber Karimpour

Department of Computer Science
University of Tabriz

 Tabriz. Iran
Karimpour.jaber@gmail.com

Sina Zangbari Kouhi
Department of Computer Science

University of Tabriz
 Tabriz. Iran

Zangbari89@ms.tabrizu.ac.ir

Faranak Nejati
Department of Computer Science

University of Tabriz
 Tabriz. Iran

Najati89@ms.tabrizu.ac.ir

Abstract: In real-time systems, specification, analysis and verification are very important research topics and practical implementation of real time
systems need great accuracy. Component-based design is an approach to design and manufacture real-timed systems. This method is a reuse-based
technique which improves some of requirements such as increasing their usability, flexibility, adaptation, reducing the cost of software products and
Etc. In this Paper, we present a theory for modelling behaviour, interactions, and processes of component based real-time systems. For this purpose,
we used concepts of time automata, time interface automata and discrete event components. Each timed component is made based on its
corresponding timed interface. Timed Interfaces identify all input-output expects and time of occurrence of any processes. One of challenges in
production of systems based on components is that the component produced conforms to its equivalent interface. We developed a theory to check the
consistency between timed component and a given timed interface. Theory presented in this paper is considered as a framework for formal
specification and verification.

Keywords: real-time systems, component-base systems, time automata, time interface, consistency.

I. INTRODUCTION

Verification of systems is the main and principal part in
development of systems. This process is very important in
systems such as real-time systems which have critical
processes. In real-time systems [20] not only logical accuracy
of operations and processes, but also execution time should be
considered. These systems include time limitation and if the
operation is not executed on demanded time, the system is
failed and causes heavy damages such as loss of resources or
even endangering the human lives. These systems need
precision and speed. For example, air bag system in a car is a
simple sample of real-time systems. This system should
operate in a short time and if is not completed in time
limitation; it means system is failed.

Some examples of these systems include digital control
system, signal process, telecommunication system, and
industrial systems. Component-based design [19] is a useful
way todesign and develops real time systems. Since use of
components in industry is increased during recent years, there
is more attempts for designing efficient components based on
principles and structure of systems designed. The method used
for modeling of component based real time systems should
have appropriate syntax and semantic able to precise
specification of timed components, and provide faultless way
to their composition and break or reduce the state space
explosion (One of the problems in checking consistency).

To solve the state space explosion problem a variety of
approaches have been proposed. These methods are classified
into multiple categories such as abstraction [21, 22], on the fly
model checking [15] and compositional verification [16, 17
and 18]. In this paper for attacking the state space explosion
we used compositional verification which is based on “divided
and conquer”. This method break up a complex system into
subtasks which involves the checking of its components and
each subtask verified independently on the equivalent
component.

In this paper, we want to extend a formal definition of
timed discrete event component (TDEC) and verify
consistency with using the promoted theories of Timed
Automata [1], Timed Interface Automata [2] and Discrete
Event Components [3].

a. Timed automata [1, 10],is a theory for description,

analyzes and verify timed systems. In this paper we use
the work of Alur and Dill [1] which extended finite
automata with a set of clock-variables. Each transition
associated with a set of clock-variables and clock-guards;
if current clock-variables satisfy the clock guard then a
transition can be take place. The clock-values increase
with the same rate and before starting of any transition
set to zero.

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 32

b. A timed interface automaton [2], a precise definition of
components interaction with each other and with the
environment, is independent components specified by
their interfaces. In [2] Alfaro and Henzinger established a
framework successfully for timed Interface automata
which modeled as a two player game: the input player is
the inputs that each component accepts from the
environment, and the player output is the achievable
outputs of component. The component is usable in any
design if its corresponding TI will be a well-formed, this
means that, there is some environment which satisfies
component expects.

c. In [3], Jin promoted a formal syntax for discrete event
component and used interface automata (IAs) to describe
component assumptions. Interface automata is a
formalism that proposed by Alfaro and Henzinger [6, 7].
In Jin’s theory are general definitions of Reactive
Transition Systems. The conformances of a component
to an IA determined by calculating local state space of
component with regard to IA and search for error states
in this local space. Local state space is Synchronized
product of two composed components.

Since specification and implementation in real timed
systems are very important, the proposed framework in this
paper should support certain characteristics: simple and
unambiguous syntax and semantic, which allows to specify the
set of requirements and assumption of components. The first
challenge of making component-based real-timed systems is
well-defined timed components. Structural composition and
communication, which combine two or more separate
components, that each of them has their own properties,
assumptions and specifications. In the composite component,
interacts can determine by synchronization vectors [8] of input
and output events. Consistency, components are
implementation of its corresponding interface, hence, we need
a reliable method to checking the conformance of TDEC with
TIAs.

A. Paper Outline:
Next section includes some definitions of labeled transition

systems [11, 12], discrete event components [3] and timed
interface automata [2]. In section 3, we first introduce TDEC
and the composition of two TDEC by developing the work of
Jin, for this purpose, we use the regular framework of Arnold
and Henzinger [2]. Then we check the conformance of TDEC
to a given TIA with searching in local state space of composite
TDEC and TIA (synchronized product) for the lack of
unexpected states. Finally, section 4, constitutes a summary of
result of this paper and future work.

II. PREVIOUS WORKS

Due to the need for well-defined specification of
components and ensure their correctness, many proposal have
been established. For example, time Petri net, timed automata,

finite-state machine, labeled transition system, timed interface
automata, labeled transition systems (LTSs) and discrete event
component, which are theories in computer sciences and used
for modeling systems and components. In the following, some
of these theories that are related work will be summarized.

A. Labeled transition system:
A labeled transition system is a graph consisting set of

nodes and set of edges. The nodes present states and
transitions indicated by the edges which labeled whit actions.
To test systems by LTSs, we should simulate behavior of
systems via LTS semantic. For this purpose, we should
consider quantitative aspects. A LTS is defined as follow:

Definition 1: A labeled transition system is 4-tuple

, where:
a. S is a non-empty finite set of states;
b. is the initial state;
c. is a set of labels; consists of two countable disjoint

set of input labels I, and set of output labels O;
d. is a set of the transition

relation;
B. Discrete event component:

In [3], Jin introduced general definition of reactive
transition systems (RTS) which is similar to labeled transition
systems (LTS). Difference of RTS and LTS is in control of
actions (called internal event in RTSs and labeled in LTSs).
RTSs may control input and output actions, but input actions
are out of control. Input actions are under control of
environment.

Synchronization vector is used for composition of RTS.
This concept presented in [8] by Arnold and Nivate which is
presented as a general mathematical model for any empty and
non-empty set of synchronize processes, components may
accept any number of input at any time, but outputs are
limited, therefore, author in [3] changed concept of
synchronization vector in a way that any vector exactly has
one output and the number of input events:

Definition 2: Consider are the sets of events,

R is a relation such that , a set
and is empty for all i, j which:

. Let projections for and sets of
keys for , then r indexed by

 if there exists:
a. for all ;
b. .

Since, RTS has limitations and they are not suitable for
practical use. Therefore, the author in [3] has developed these
systems as follows:

a. Any event includes two parts of kind and value. Kind is

used for classification of events and value for exchanged
data.

b. Several output-input ports are added to RSTS. Any port
indicates special type of events. The component shall use

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 33

these ports for relationship with other components and
environment.

Definition 3: A discrete event component (DEC) is a
tuple , where:

a. S is a set of states;
b. is the initial state;
c. is a set of ports, which consisting of two disjoint

ports: input ports and output ports .
d. , is a total function which mapping each

port to a subset of values form the universe;
e. is a set of events, where

 is a set of input events,
 is a set of output

events, and set of internal event has not any relation
with set of port .

f. ∆ is a set of transition.

C. Time interface:
Alfaro and Henzinger [2] presented a theory which is able

to modeling the timing of the behavior and interaction a
component. We can design component-based real-timed
systems in the two ways: specification of component interface,
if an interface is well-formed, then the component is usable in
any design. Checking for interface compatibility, if
composition of two interfaces is well-formed, then we can say
they are compatible. A timed interface automaton defined as
follow:

Definition 4: (Timed Interface Automata): A TI is a

tuple , where:

a. S is a set of all state;
b. is the initial state;
c. is the set of all input action, which

 is immediate input. T is a set of timed action;
d. is the set of all output action,

which is immediate output;
e. is the input transition relation;
f. is the output transition relation.

III. PROPOSED FORMALISM

Timed discrete event component, has three kinds of events:
input events, output events, internal events. Events are
transitions that occur between components. These transitions
can be classified in two ways: The Instant transitions, which
must be done rapidly upon entry to a state. The Timed
Transition, which describes the time interval for each of
transition.

We used definition of Timed Automata [1], Timed
Interface Automata [2] and Discrete Event Component [3] to
describe the Timed Discrete Event Components (TDEC) as
follow:

Definition 5: (Timed Discrete-Event Component): A
TDEC is a tuple , where:

a. S is a finite set of state,
b. is the initial state,
c. is a finite set of clocks;
d. is a set of ports, which consisting of input ports

and output ports , ;
e. , which mapping each port to a subset of

real value;
f. ∑ is a finite set of all timed events, which consisting

of three mutually disjoint set of input timed events
∑I, output timed events ∑O, and internal timed events
∑H, where ∑H is a pair (t, e) where e is an action
taken by an automata C after t ∊ R+ and set of internal
event ∑ H has not any relation with set of port ,

;
g. is a function that maps each state of

TDEC to its invariant, TDEC has three kind of
invariants: input invariants which specify upper
bounds (U) and lower bounds (L) for the time of
input events, output invariants, which specify upper
bounds and lower bounds for the time of output
events and internal invariants which specify upper
bounds and lower bounds for the time of internal
events.

h. is a finite set of
transitions, and is a step and we
often write , state S is the source and is
destination of the transition, g is a guard on the clock
value that specifies when the transition can be taken,

 is an timed event, and in each transitions r
resets clock values to 0.

Let V is a function and we use to mean that the
clock values satisfy the guard g. If the guard is false under
the valuation V, we write .

Definition 6: A timed trace of TDEC is a sequence of

timed events where
for all . The trace projection of ξ
on C is a timed event sequence consisting of the action that C
takes which defined by:

a. If TDEC C has no timed events (t, e), then the trace

projection is empty.
b. If TDEC C has an internal or output timed event (t, e),

then (t, e) added to the trace projection.
c. If (t, e) is an input event from environment or other

TDEC which corresponds to a synchronization vector r

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 34

with πc(r) (an input event of c), then πc(r) is added to the
trace projection.

d. In otherwise trace projection remains unchanged.

The set of timed enabled events at s are timed event that
their guards always satisfied, , and there is at least one
such that , for denote the timed enabled events often
we write en. en have two kind of disjoint set of input en
and output en . A TDEC C is input-universal if

. The TDEC C is called mirror if
and .
The TDEC may give a rise to two kinds of error: error

state, where , and timed error, where
and . The set of trap step in TDEC is

,Trap step while
occur that TDEC has an timed event that is not in set of timed
enable input.If then the input-universal version of
TDEC defined as follow:

(a).

A. Composition of two TDEC:
Two TDEC p, q are composable if they have no shared

output actions, . We can compose two
components as follow:

Definition 7: For two composable TDEC C1 and C2, the

product C1⨯C2 is the TDEC N, where:
a. is a set of timed events consisting of three disjoint

sets of input timed event \ shared
input event (C1, C2) and output timed events

 and . We let internal timed
events

.
b. .
c. is relation index by

.

A composition of TDEC is called closed of = 0, or open
otherwise. We often write N = (W, R) for a close composition
of TDEC N.

Definition 8: Consider a composite TDEC C = (, W, R)

such that all l ∊W are input universal. The synchronized
product of C is a TDEC , where:

a. , and ;
b. Inv (The time bounds (L, U)) in C:
a) If then remain

unchanged;
b) If then its time bounds in C are defined

as follow:
.

c. g is a guard on the clock value that specifies when the
transition can be taken, the guard expression of the
transition in C:

a) If then g is the
conjunction of those of gC1 and gC2.

b) If and then g is the same as
with .

c) If and then g is the same as
with .

d. ∆ is a set of transitions
such as, for i = 1,2:

a) If then:

{(s s’) | V⊧ g, e ∊ ∑I
C, ∃f ∊ R (R is synchronization

vector), producerf = env ˄ e = πenv(f) or (s’ = s)}∪{(s
s’) | V⊧ g, e ∊ ∑I

C, ∃f ∊ R (R is synchronization vector),
∃k ∉ W, producerf = k, e = πk(f) or (s’ = s)}.

The timed input event, which triggered the transition from

s to s’ has been produced in two different ways: the
environment and other components.

b) If (t, e)∊ O then:

{(s s’) | V⊧ g, f ∊ R, ∃L ∊ W, L = producerf˄ e ∊
πenv(f) ˄ (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si} ∪ {(s s’) |
V⊧ g, f ∊ R, ∃L ∊ W, ∃k ∉ W, k = consumer, L = producerf
˄ e ∊ πk(f) ˄ (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si}

Let (t, e) is a timed output event, thus, this timed event

produced by one of the components which its consumer is the
environment or other components.

c) If (t, e)∊ # then:

{(si s’i) | V⊧ g, f ∊ R, ∃L ∊ W, e ∊ ∑H
L˄ (sL, gL, eL, s’L)

∊ ∆L ˄ (i ∊ W \ {L}, s’i = si)} ∪ {(s s’) | V⊧ g, f ∊ R,
∃L ∊ W, e ∊ ∑O

L , L = producerf , e ∊πL(f) ˄ πenv(f) = ˄
(sL, gL, e, s’L) ∊ ∆L or s’ = s} ∪ {(s s’) | V⊧ g, ∃L ∊ W,
e ∊ ∑L ˄ , (sL, gL, πL(f), r, s’L) ∊ ∆L ˄ (i ∊ W\{L},
s’ = s)}

The Timed internal event can occur in several ways: The

timed internal event taken by any components in the
composite TDEC which is a timed internal step of the TDEC.
The timed output event of any components which has no
contiguity on environment or other components are not in
composite TDEC. The timed event can be taken by any
component but no corresponding synchronization vector
exists.

In designing of timed components, the run time of
transitions should be considered with corresponding interface.
In so doing, those transitions that are instant transitions should

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 35

be designed in a way that it could perform immediately, but in
timed transitions two factors should be considered:

a. Timed guard (g) that exists in the interface.
b. Observing upper bound and lower bound.

Guards represents as (<, >, =,), which in checking of

consistency should be considered to use exactly those which
are used interface.

Also the upper bound and lower bound of component
should not exceed of those that are used in interface. The
following examples are some cases in which we can design
some components according to their interfaces.

In the following, we show Examples of guard expression
on the timed interface automata and timed discrete event
components:

Figure 1: Timed Interface.

Figure 2: Timed Discrete Event Component.

Figure 3: Timed DEC.

Figure 4: Timed DEC.

Figure 5: Timed DEC.

Another point is that, a component can accept one or some
input from the environment or other components. If the
number of output is smaller than or equal with the number of
interface outputs, then likely to observe the system safety. In
other word the output components considered subsets of their
corresponding output interface. But having any number of
inputs for a component is allowed because the environment
will not offer them. The following examples are samples of

input and output of the components which we can design from
interface.

Figure 6: Timed Interface.

Figure 7: Timed DEC.

Figure 8: Timed DEC.

Definition 8 (Normalization): Consider TDEC C and TIA
A. The Normalization operation on C is defined as follow:

Let ƞ is a valuation function and we use to

mean that upper bound and lower bound πC(q) are consistent
with corresponding TA A.

To facilitate checking conformance, we need to change the

interface which can act as a component. The TIA events
considered as ports and each port has value, the TIA is able to
produce all permissive data values and we call this the most
abstract implementations. If MAI of TIA taken an unspecified
timed input event then it goes to the error state. MAI is an
input-universal version of TDEC. The most abstract

a: int b: int
a.y?

b.z!

X = 0 X = 15

 S0

 S1

 S2

a: int b: int
a.y! b.z!

X = 0 5 ≤ X≤ 14

 S0

 S1

 S2

a: int b: int
a.y! b.z!

X = 0 4 ≤ X≤ 15

 S0

 S1

 S2

a? x = 0 c! x ≤10

b? x = 5

 x = 0

d! x ≤ 5

e! x ≤ 7

a: int

b: int d: int

c: int a? x = 0
c! x ≤ 10

f? x = 0 d! x ≤ 5

c: int e: int

d: int

b: int a: int a? x =

c! x ≤ 10

b? x = 5 e! x ≤ 7

d! f

f: int

a?

B!
 a? b!

X = 0 5 ≤ x ≤ 15
 S0

 S1

 S2

a: int b: int
a.y?

x = 0
 S0

 S1

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 36

implementation (MAI) of TA A is a
TDEC , where:

b.
c.
d. and

 and

B. Consistency of Timed Discrete Event Component:
To define consistency, Jin et al. [3] used alternating

simulation [6] that always assumed the environment to satisfy
the assumption of the specification. In this way, the TDEC can
accept more inputs and provide less output from its TIA and
lower bound and upper bound of each state of TDEC must not
exceed of lower bound and upper bound from its
corresponding TIA states. In the other words, time-conditions
of component should be subset of TIA time-conditions.

Definition 9: Let a TDEC C and corresponding TA A such

that and . If there exists an alternating
simulation relation ⊰⊆ SC⨯ g ⨯ SA; we can say C conforms to
A and written C ⊰ A such that s0

C⊰ s0
A, for q ⊰ s and gq’ ⊰ gs

three following conditions should be hold:
a. Since TIA has not any internal timed event, when

TDEC take an internal step from q the aftereffect of
TDEC must imitate the previous state s, guard g and
invariant of TIA:
e ∊ ∑H

C ˄ v ⊧ g, (q, g, e, r, q’) ∊ ∆C implies q’ ⊰ s,
gq’ ⊰ gs and (Lq’ and Uq’) ⊰ (Ls and Us).

b. Since the output component isa subset of its
corresponding interface outputs, the TDEC must not
produce an output timed event that the TIA cannot
produce.
t.x.v ∊ ∑O

C ˄ v ⊧ g, (q, g, t.x.v, r, q’) ∊ ∆C implies
that (s, g, t.x, r, s’) ∊ ∆A such that q’ ⊰ s’, gq’ ⊰ gs’, (
Lq’ and Uq’) ⊰ (Ls’ and Us’).

c. Since the input interface should be a subset of
component inputs, when the TDEC takes a timed
event t.x.v from q the resultant state of TDEC must be
simulate the resultant state of TIA:
t.x ∊ ∑I

A ˄ v ⊧ g, (s, g, t.x, r, s’) ∊ ∆A implies that
v ∊ C(x), (q, g, t.x.v, q’) ∊ ∆C such that q’ ⊰ s’, gq’ ⊰

gs’, (Lq’ and Uq’) ⊰ (Ls and Us).

Further, The TDEC must simulate guards of TIA and takes
its timed event when timed event of TIA occurs (condition 2,
3).

In the following, theory 1 present a formalism to checking
consistency of TDECs with using local state space, alternating
simulation, equal or less output ports of TIA and timed
conditions that respects time-condition of TIA.

Theorem 1: Let a TDEC C and corresponding TA A that

∑I
A ⊆ αI

C and αO
C ⊆ ∑O

A, and J be MAI mirror of A. Let N =

{W, G, R} be a closed composite of TDEC and w = {C, J}.
Then the local state space of C with respect to A is the
synchronized product of N and we let L⊗ = { s0

⊗, S⊗, g⊗,
∑⊗, ∆⊗} as the local state space. Then we can say C conforms
to A if and only if ∀s, q ∊ S⊗, πJ(s) ≠ ⊥, ƞ J ⊧ πC(q).

Proof of sufficiency: Consider Θ = {(q, g, s) ∊ L⊗ | q ∊ SC,

s ∊ SA, g = g⊗}, then using the induction and prove Θ is an
alternative simulation relation between C and A. First, (q0

C, g,
s0

A) ∊ Θ because s0
A = s0

J. Next, suppose (q, g, s) ∊ Θ, then:

a) For e ∊ ∑H
C ˄ V ⊧ g, if ∃q C q’, then (q’, s) ∊ S⊗ and

since time-conditions of TDEC respects TIA time-
condition then (Lq’ and Uq’) ⊰ (Ls’ and Us’) implies gq’ ⊰
gs. Hence (q’, g, s) ∊Θ;

b) For t.x.v ∊ ∑O
C, t.x ∊ ∑O

A and thus t.x.v ∊ ∑I
J. Since, J is

input-universal, If ∃q J q’, then ∃s’ ∊ SJ˄ V ⊧ g, (q,
s) ⊗ (q’, s’). Since (q’, s’) ∊ S⊗, from the condition
of the theorem, we have s’ ≠ ⊥ and time-conditions of
TDEC respects TIA time-condition then

, ≯ and gq’⊰ gs’. Hence s’ ∊ SA,
ƞ A ⊧ πC(q) and (q’, g, s’) ∊ Θ;

c) For t.x ∊ ∑I
A, t.x ∊ αI

C and v ∊ θC(x), t.x.v ∊ ∑O
J. If ∃s

A s’, then V⊧ g ˄ s J s’ and q’ ∊ SC, V⊧ g, (q,
s) (q’, s’) (because C is input-universal). Hence, ƞ A
⊧ πC(q) and (q’, g, s’) ∊ Θ.

Proof of necessity: Consider an alternating simulation
relation ⊰ between TDEC C and TI A, and (q, g, s) ∊ S⊗ be a
state reachable via trace б (б be a trace of L⊗ from s0

⊗). Then
we prove s ≠⊥, ƞ J ⊧ πC(q), q ⊰ s and gq ⊰ gs by induction on
the length of б. First, when б = , we know (L, U) (πc (s0)) = (L,
U) (πj(s0)) = 0, (q, s) = (s0

C, s0
A) = s0

⊗. Hence s ≠⊥, ƞ J ⊧ πC(q) (it
means L (πc (s)) L (πj(s)), U (πc (s))≯ U(πJ(s))), q ⊰ s and gq ⊰ gs.
Next, suppose s ≠⊥ ˄ ƞ J ⊧ πC(q) ˄ q ⊰ s ˄ gq ⊰ gs hold for
any б and we considered that time-conditions of TDEC
respects TIA time-condition. Since SJ = SA U {⊥}, we know s
∊ SA.

a) For e ∊ ∑H

C ˄ V ⊧ g, if (q, s) ⊗ (q’, s’), then s’ = s
(thus s’ ≠⊥) and q C q’. Since q ⊰ s ˄ g q⊰ gs ˄ (L q and
Uq) ⊰ (Ls and Us) , we can get q’ ⊰ s ˄ g q’ ⊰ gs. Thus s’
≠⊥ ˄ ƞ A ⊧ πC(q).

b) For t.x.v ∊ ∑O
C ˄ V ⊧ g, if ∃(q, s) ⊗ (q’, s’), then q

C q’. Since q ⊰ s, gq ⊰ gs and A is deterministic, s’ ∊
SA, s A s’ and q’ ⊰ s’. Since we considered that time-
conditions of TDEC respects TIA time-condition, then gq’
⊰ gs’ and (Lq’ and Uq’) ⊰ (Ls’ and Us’). Thus s’ ≠⊥ ˄ ƞ A
⊧ πC(q).

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 37

c) For t.x.v ∊ ∑O
J ˄ V ⊧ g, if ∃(q, s) ⊗ (q’, s’), Then s

J s’, gq’⊰ gs’ and (Lq’ and Uq’) ⊰ (Ls and Us). Since t.x
∊ ∑I

A, s A s’ and s’ ≠⊥ ˄ ƞ A ⊧ πC(q).

IV. CONCLUSION

In this paper, we have extended a theory for
specificationand verification the consistency of component-
based real-timed systems based on timed automata, timed
interface automata and discrete event components. Since real
time systems have critical processes, the framework which
proposed should have certain characteristics that defined in
section 1:

a. The work that presented in this paper has simple and

unambiguous definition for specifying timed components
that uses definition of timed automata [1], time interface
automata [2] and discrete event component [3]. The
components have a set of variables that simulates clock
and when the transition started the clock variables
increase whit the same speed and clock constraint are
used to restrict the transition.

b. We developed a definition for composition of two
component and communication between them, described
by synchronization vector. Two components allowed
combining if they have not any shared output.

c. For checking the consistency between TDEC and TIA,
we extended the theory which presented in [3] which
detected the local state space for the lack of unexpected
states, also upper bound and lower bound of each timed
transition in component should not exceed of
corresponding transition in its timed interface.

Currently, we work on implementing tool based on our
approach that can automatically verify consistency. To future
work, we want to extend networks of both DECs and IAs
defined in [2] and hierarchical components defined in [13] for
component-based real-time systems.

V. REFERENCES

[1]. R. Alur and D. L. Dill,“A theory of timed automata,”Theor.
Comput.Sci,1994, pp. 183-235.

[2]. L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga,“Timed
interfaces,” In A. L. Sangiovanni-Vincentelli and J. Sifakis,
editors, EMSOFT, Springer , 2002, volume 2491 of LNCS,
pp. 108-122.

[3]. jin Y, Lakos C andEsser R,“modular consistency analysis of
component-based designs,” J Res PractInfTechnol, 2004,
36(3): 186-208.

[4]. jin Y, Lakos C and Esser R,“component-based design and
analysis: a case study,” In: Software engineering and formal

methods (SEFM), IEEE computer society press, Los
Alamitos, 2003, pp. 126-135.

[5]. Rajeev Alur and David L. Dill, “Automata for modeling real-
time systems,” In Proceedings, Seventeenth International
Colloquium on Automata, Languages and Programming,
Springer-Verlag, volume 443 of Lecture Notes in Computer
Science, 1990, pp. 322–335.

[6]. de Alfaro L and Henzinger T, “Interface Automata,” In:
proceedings of the joint 8th European software engineering
(ESEC/FSE-10), 5 of software engineering notes, ACM
press, vol 26, new York,septeber 10-14 2001, pp. 109- 120.

[7]. de Alfaro L and Henzinger T,“Interface-Based Design’” In:
marktoberdorf summer school, Kluwer, aprril 12-15 2004, pp.
50-56.

[8]. A. Arnold,“Finite transition systems - Semantics of
communicating processes,” Prentice Hall,1994.

[9]. R. Alur and T. A. Henzinger,“Reactive modules,” Formal
Methods in System Design: AnInternational Journal, July
1999, pp. 7–48.

[10]. Johan Bengtsson and Wang Yi,“Timed Automata: Semantics,
Algorithms and tools,” Uppsala University.

[11]. Jan Tretmans,“Model Based Testing With Labeled Transition
Systems,”Embedded Systems Institute, EindhovenAnd
Radboud University, Nijmegen,The Netherlands,
Jan.Tretmans@Esi.Nl.

[12]. A. Arnold Labri,“Automatic Verification Of Properties In
Transition Systems,” Universit´E Bordeaux I, 351, Cours De
La Lib´Eration, F-33405 TalenceCedex, FranceANDS.
BRLEKLacim, Universit´E Du Qu´Ebec `A Montr´Eal, P.O.
Box 8888, Succursale “Centre Ville”, Montr´Eal, (QC)
Canada.

[13]. Ayaz. Isazadeh, Jaber. Karimpour, “A new formalism for
mathematical description and verification of component-
based systems,” Springer, 2 October 2008, pp. 334-353, DOI
10.1007/s11227-008-0240-y.

[14]. Szyperski C, “Component Software: beyond object-oriented
programming,” 2nd end. Addition Wesley, reading, 2000.

[15]. R. Gerth, D. Peled, M. Vardi, and P, Wolper,“Simple on-the-
fly automatic verification of linear temporal logic,” In
Protocol Specification Testing and Verification, Warsaw,
Poland, 1995,pp. 3–18.

[16]. K. G. Larsen and L. Xinxin,“Compositionality through an
operational semantics of contexts,” In M. Paterson, editor,
Proceedings of the 17th International Colloquium on
Automata, Languages, and Programming (ICALP’90),
Springer-Verlag, LNCS 443, 1990, pp. 526–539.

[17]. Kupferman, O, Vardi and M.Y,“Modular Model Checking,”
In: Compositionality: The SignificantDifference.
International Symposium, COMPOS’97, Bad Malente,
Germany, Springer-Verlag, Volume 1536 of LNCS, 1998, pp.
381–401.

Sina Zangbari Kouhi, Faranak Nejati et al, International Journal of Advanced Research in Computer Science, 4 (8), May–June, 2013,31-38

© 2010, IJARCS All Rights Reserved 38

[18]. G. Winskel,“on the compositional checking of validity,” In J.
C. M. Baeten and J. W. Klop,editors, Theories of
Concurrency: Unification and Extension (CONCUR’90),
LNCS 458, Springer-Verlag, 1990.

[19]. Andreas Fredriksson,“Component-Based Systems,”
Development, basic concept, Växjö University, Department
of mathematics, statistics, and computer science Informatics,
Spring 99.

[20]. Philip A. Laplante and Seppo J. Ovaska,“Real time systems
design and analysis: Tools for the practitioner,” the institute
of electrical and electronics engineers,

[21]. S. Graf an d H. Sa ı̈d i,“Construction of abstract state graphs
with PVS,” Springer Verlag, 1997.

[22]. H. Sa ı̈di, “Model checking guided abstraction and analysis,”
In Proceedings of the 7thInternational Static Analysis
Symposium (SAS’00), LNCS 1824, 2000.

	INTRODUCTION
	Paper Outline:

	PREVIOUS WORKS
	Labeled transition system:
	Discrete event component:
	,,𝜅-𝑟..=1for all 𝑟∈𝑅;
	∀𝑒∈𝛤, ∃𝑟∈𝑅, 𝑒∈,𝜅-𝑟.∧∀,𝑟.∈𝑅\{𝑟}, 𝑒∉,𝜅-𝑟..

	Time interface:

	PROPOSED FORMALISM
	Composition of two TDEC:
	If (𝑡,𝑒)∈(,𝛴-𝑖.−,𝛴-𝑗.)∪(,𝛴-𝑗.−,𝛴-𝑖.) then (,𝐿-𝑒.,,𝑈-𝑒.) remain unchanged;
	If (𝑡,𝑒)∈,𝛴-𝑖.∩,𝛴-𝑗. then its time bounds in C are defined as follow:
	,,𝐿-𝑒.,,𝑈-𝑒..=(,𝑚𝑎𝑥-,,𝐿-𝑖,𝑒.,,𝐿-𝑗,𝑒...,,𝑚𝑖𝑛-,,𝑈-𝑖,𝑒.,,𝑈-𝑗,𝑒...).
	If (𝑡,𝑒)∈,𝛤-#.\(,𝛴-,𝐶-1.-#.∪,𝛴-,𝐶-2.-#.∪,𝜀.) then g is the conjunction of those of gC1 and gC2.
	If (𝑡,𝑒)∈,𝛴-,𝐶-1.. and (𝑡,𝑒)∉,𝛴-,𝐶-2.. then g is the same as with ,𝑔-,𝐶-1...
	If (𝑡,𝑒)∉,𝛴-,𝐶-1.. and(𝑡,𝑒)∈,𝛴-,𝐶-2.. then g is the same as with ,𝑔-,𝐶-2...
	a) If (𝑡,𝑒)∈,𝛤-𝐼. then:
	{(s,,𝑔, 𝑒, 𝑟.. s’) | V⊧ g, e ∊ ∑IC, ∃f ∊ R (R is synchronization vector), producerf = env ˄ e = πenv(f) or (s’ = s)}∪{(s,,𝑔, 𝑒, 𝑟.. s’) | V⊧ g, e ∊ ∑IC, ∃f ∊ R (R is synchronization vector), ∃k ∉ W, producerf = k, e = πk(f) or (s’ = s)}.
	b) If (t, e)∊𝛤O then:
	{(s,,𝑔, 𝑒, 𝑟.. s’) | V⊧ g, f ∊ R, ∃L ∊ W, L = producerf˄ e ∊ πenv(f) ˄ (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si} ∪ {(s,,𝑔, 𝑒, 𝑟.. s’) | V⊧ g, f ∊ R, ∃L ∊ W, ∃k ∉ W, k = consumer, L = producerf ˄ e ∊ πk(f) ˄ (sL, gL, πL(f), r, s’L) ∊ ∆L or s’i = si}
	If (t, e)∊𝛤# then:
	{(si ,,𝑔, 𝑒, 𝑟.. s’i) | V⊧ g, f ∊ R, ∃L ∊ W, e ∊ ∑HL˄ (sL, gL, eL, s’L) ∊ ∆L ˄ (∀i ∊ W \ {L}, s’i = si)} ∪ {(s,,𝑔, 𝑒, 𝑟.. s’) | V⊧ g, f ∊ R, ∃L ∊ W, e ∊ ∑OL , L = producerf , e ∊πL(f) ˄πenv(f) = 𝜖 ˄ (sL, gL, e, s’L) ∊ ∆L or s’ = s} ∪ {(s,,𝑔, ...

	Consistency of Timed Discrete Event Component:

	CONCLUSION
	REFERENCES

