
Volume 4, No. 6, May 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

REVIEW ARTICAL

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 152 CONFERENCE PAPER

“A National Level Conference on Recent Trends in Information Technology and
Technical Symposium” On 09th March 2013

Organized by
Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

Grid Operating System: Making Dynamic Virtual Services in Organizations

Miss.Snehal S. Dhole
B.E-I.T (Final Year), Jawaharlal Darda Institute Of

Engineering And Technology,
Yavatmal.(MS)INDIA

snehaldhole14@gmail.com

Prof. M. R. Shahade
Assistant Professor

 Jawaharlal Darda Institute Of Engineering And
Technology,

Yavatmal.(MS)INDIA

Abstract: The structure of a grid system should be such that even a small personal computer can avail the facility of many supercomputers at a time.
The Grid computing has no straightforward way to control and administer grids dynamically. Grid operating systems bear the promise to become the
new frontier in management of complex distributed computing systems and services that will offer for a single node: abstraction from hardware, and
secure resource sharing with illusion dynamically by integrating grid capabilities into the kernel. It will integrate existing host operating system with
a grid through an interoperating interface with expert dynamic OS on different versions of Grid virtual machine implementing grid nodes. Its goal is
the creation of parallel processing pervasive grid computing platform that facilitates the rapid deployment and easy maintenance of grids of
preferring peer to peer topology.

Keywords—Grid operating systems, distributed computing, host operating system, Expert dynamic OS, Grid virtual machine.

I. INTRODUCTION

Grid is a type of parallel and distributed system [1] that
enables the sharing, selection, and aggregation of
geographically distributed "autonomous" resources
dynamically at runtime depending on their availability,
capability, performance, cost, and users' quality-of-service
requirements Today Grid middleware is used to address the
complexity of GRID environments and to help users in
using GRID resources in an integrated way. This role in
conventional computers is played by operating systems.
Now it is time to develop a GRID operating system that may
offer an integrated support for efficient management of local
and remote resources available on a GRID environment to
which a machine is connected. Without an operating system,
Grids can fail the goal to enter mainstream computing and
will not exploit all their functionality.

As a conventional operating system provides an
abstraction layer on top of the underlying physical resources
of a computer, a GRID operating system must be designed
to provide a virtual machine interface layered over the
distributed, heterogeneous, autonomous, and dynamically
available resources that compose a GRID. Resource sharing
is the main objective of Grids and operating systems is the
more appropriate environment for providing GRID users
access to resource sharing facilities in a secure and
transparent way. In a shell environment with recovery
facilities enables programs' interactions with the file system
to be monitored very closely. Using this close monitoring,
some Unix programs can be equipped with more
sophisticated features. In this way, a make-like utility has
been designed and implemented which provides automatic
facilities in performing compilations of programs.

A. A GRID OS should:

a. Provide simple connection to the GRID, Tolerating
node failures and allowing application checkpoint

b. Offer access to GRID resources, and Resource
distribution transparency: Offering processes
transparent access to all resources, and resource
sharing between processes whatever the resource and
process location.

c. Define policies for providing local resource to a GRID.
d. High performance; High availability.
e. Scalability: Dynamic system reconfiguration, node

addition and eviction, transparently to applications.
Grid operating systems support properties and provide

functionalities that are usually addressed at middleware level to
enable seamless integration and management of distributed
resources while providing a uniform interface to applications
and services. We believe that the Grid infrastructure must
absolutely reduce the burden on the application developer
investing on the open source operating systems and extending
them towards Grid, simplifying the life of the high-level Grid
services implementers because they could rely on the native
services of the operating system kernel for tasks such as
resource or process management.

A Grid is assumed to be made of an uncountable number of
computers that are called Grid nodes (or simply nodes). Grid
OS aims to be a first step towards the creation of a true open
source operating system for Grid platforms supporting
distributed resources, by embedding some important basic
services or functionalities directly into the operating system
kernel Grid OS aims at making VO management easy for
administrators and work within VOs easy for users. The cost of
administering and operating a VO (e.g., adding or removing
nodes, changing access policy, authenticating and authorizing
users) should be minimized to a bounded value rather than
simply increase with the number of users and resources

Snehal S. Dhole et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,152-156

© 2010, IJARCS All Rights Reserved 153 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

participating in the VO. Deployment of Grids with existing
Grid middleware [2, 3] involves the installation of multiple
layers of software. Mathews et al [7] have highlighted
similar issues. Multiple software layers in a Grid do not
ensure fault tolerance. For example, with the popular cluster
execution service Condor [8], a centralized cluster
middleware can be liable to complete failure if a central
server crashes. Active research is being pursued into more
robust, flexible and fault tolerant Grid architectures, by
converging Grid and Peer to Peer (P2P) topologies.
However no Grid as of yet, has shown the advantages of
such convergence.

A real operating system presents three principal
interfaces to its users [6]: the virtual machine or operating
system primitives accessible through programming
languages; the utility programs such as compilers, linkers,
and editors, and the command language or means by which
users access system resources from a terminal. Most system
services are available through one or more of these
interfaces (see Figure 1). The idea of a virtual operating
system is to provide standard versions of these interfaces,
based on organizational requirements. Possible applications
include data management environments, office information
environments, real-time process control environments, and
program development environments, to name a few.
Once the three interfaces are specified, implementation
consists choosing one or more programming languages;
a) developing run-time libraries or extending the selected

programming languages to support the chosen virtual
machine on each target system;

b) implementing the utilities and command language in
one or more of the selected programming languages,
relying on the virtual machine to interface to the target
operating systems;

c) Writing the necessary documentation.
A virtual operating system becomes a real operating

system when the associated virtual machine corresponds to a
physical machine. However, the emphasis in building a
virtual operating system is on the interface presented to the
user. The virtual machine is a highly idealized set of
primitive functions geared to organizational programming
requirements. It bears almost no functional resemblance to
the underlying hardware which actually performs the work.
In general, a virtual operating system is restricted to those
system layers. Installation consists of interfacing the
standardized virtual machine to the vendor supplied system.
parts of an ordinary operating system which an organization
considers important in completing its work. Obviously, a
single real operating system can support many virtual
operating systems. To achieve the full benefits of this
approach, the virtual machine must be implementable
without changing the vendor software. This implies a
functional equivalence between the chosen virtual machine
and the target systems. A bootstrapping design procedure is
therefore required. Every candidate virtual machine function
must be tested on each target system before it can be
adopted. The virtual operating system approach reduces the
problem of moving to a new system to the (nontrivial)
problem of implementing a virtual machine.

All utilities and user utility.. Finally, command language
procedures are also portable, since the command language
program is portable. The availability of the entire virtual
operating system (virtual machine, utilities, an command
language) makes it easy for users and programs to move from
one vendor system to another. We emphasize that this approach
reduces the cost of moving both people and software to zero.
The overhead is the cost of implementing the virtual machine on
the candidate sys-Communications of the ACM programs are
completely portable since their interface to any particular
operating system is through the virtual machine. Similarly,
higher level procedures written for a portable utility are
themselves portable. For example, a file containing editor
commands will work on any machine supporting the editor.

Figure: 1. A virtual operating system provides standardized versions of the three

outermost system layers. Installation consists of interfacing the standardized
virtual machine to the vendor supplied system

II. LITERATURE REVIEW

A. Virtual services in organizations:

A virtual service can be seen as a temporary or permanent
coalition of geographically dispersed entities (individuals,
groups, organizational units or entire organizations) that pool
resources, capabilities and information to achieve common
objectives. There usually will be legal or contractual
arrangements between the entities. The resources can be
physical equipment such as computing or other facilities, or
other capabilities such as knowledge, information or data. In an
organization, information is stored and services and applications
are executed by a set of computers in a Grid. Key components
of a virtual services are an administrator of the organizations,
who is authorized to manage VO membership and policies, a set
of participating users (called Grid users) in different
participating domains, a set of roles which users/resources can
play in the VO, a set of rules/policies on resource availability
and access control, an (renewable) expiry time of the VO. The

Snehal S. Dhole et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,152-156

© 2010, IJARCS All Rights Reserved 154 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

main responsibilities of node-level management include:
translating from grid identities into local identities; granting
or denying access to resources, checking limitations of
resource usage (CPU wall time, disk quotas, memory, etc.);
protecting and separating of resource usage by different
users; logging and auditing of resource usage, etc.. A VO
and its implementation by an operating system can reside in
several stages of VO lifecycle: VO identification, VO
formation, VO operation, VO evolution, and VO
dissolution. In each stage a set of security threats to the
overall system exists.

Grid OS, that is to say, the operating system is fully
Grid-enabled. Once the Grid OS system has been installed
on a machine, this machine is ready to participate in a VO
with no need to install additional system software.
Modifications to Linux to natively support VOs are done
with a careful design to keep backward compatibility while
providing build-in VO management interfaces [4, 5] that are
as secure and simple to use as possible. System services and
utilities such as login and shell programs, together with
libraries, are extended in a modular approach so as to favor
VO-level resource sharing requirements while keeping
maximal transparency to users.

Access security in Grid OS will be policy driven. This
means that for each resource (which includes VOs,
applications, hosts, etc., in fact anything that requires
protection) there will be a policy specifying who can access
it and what they can do with it. In the case of a resource
such as a file, the who could be a list of individuals and/or
VOs, and the what could be read, write or execute actions
similar to the conventional Linux file permissions (with a
VO being considered as a sort of group). However, in a
distributed and VO-based environment access will typically
involve more than one entity, each with its own policies.
The idea to monitor the operating system running on a PC is
to execute the backdoor and the monitored OS in different
virtual machines on top of a virtual machine monitor. The
main issue to be tackled in the implementation is the
extraction of OS state from the memory.

a. Application Management:

As all layers will be integrated, the system will be able to
offer information about the progress of the job, accurate
monitoring of the used resources, error information, etc. In
the current Grid world, given that the managers for the
different layers are not integrated, a lot of information is lost
in the way and the one that survives it is not correlated
making it very difficult to use. For instance, in current Grid
systems it is difficult to know why an application failed,
when and with exactly what resources it run, etc. The
integration of all services in a single OS will remove the
lack of integration and offer users an execution environment
with plenty of monitoring information and a powerful
control of execution.

As the computational system are very large number in
nature so it is planned in the present work to allocate the
type of programming in a particular node hence when a user
desires to avail the grid facility; the host local OS should
handover the problem to the expert dynamic OS when

software is loaded. The other types of a program which is
complex in nature and requires the participation of many nodes .
The host local OS computer evaluates the problem and transfers
the modules to the participated computers. The third types of
software used to such that it is divided in modules equal to the
number of different grid OS and all the participating computers
processing paralleled, then the responses of each computer are
integrated in the host local OS node and which transfers the
result to the originating PC interface with expert dynamic OS.
However, when multiple users launch applications on the same
cluster, it may happen that the workload exceeds the cluster
capacity. To avoid this situation, a solution is to execute a batch
system on top of the grid operating system. When an application
is launched with the fork-delay capability enabled, its processes
are queued if the cluster is overloaded. When a process
terminates its execution, the global scheduler resumes the
execution of the delayed processes, if any. At any time, if the
cluster load is too high, the global scheduler may decide and use
grid stacks that only suspend the execution of a very few or no
processes.

b. Data Management:

It should support extended meta-data, hierarchical names
(the traditional directory structure), private, shared and
collaboration data, and data archives. It should also support
named Grid pipes, used by workflows where different processes
produce data and some others consume it, the various processes
being located on different nodes. Access rights should be
managed in a manner such that file access could be granted to
Grid users according to VO policies.

III. PROPOSED WORK

Super peer paradigms have recently gained popularity as
they enable Grids to integrate some of the advantages of peer to
peer systems making a Grid infrastructure more robust, scalable
and fault tolerant [14]. The toolkits require a common set of
services from the underlying operating system. The key
principle in Grid OS is to provide modularity. The modules
provide a policy-free API which can be used to develop high
level services like Grid FTP. Grid OS provides a basic set of
abstract dynamic services that are common to prevalent Grid
software infrastructures with minimal Core Operating System
Changes. Architectural components of Grid OS are designed to
be self configuring and plug-and-play in order to facilitate the
rapid deployment of a Grid e.g. adding a node to a site involves
a simple sign-in peer, adding a site to a remote region, involves
registration process with a remote peer. The OS can be seen
from two perspectives: First an integrated Grid Stack allowing
rapid deployment of Grids, whilst making administration of
Grids in an operating system which provides built in support for
Grid computing. There is overlap between both kernel and use
modes.

If an organization chooses to use the stack configuration,
they can easily unload the kernel space modifications and use
Grid computing from a user and middleware level. The lowest
layer in Grid OS is the kernel layer and includes modules which
facilitate Grid enabling of interactive application and fine
resource management in Grids. Grid OS however makes use of

Snehal S. Dhole et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,152-156

© 2010, IJARCS All Rights Reserved 155 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

process migration which transfers the execution context of
processes to nodes where enhanced processing capabilities
are available. Process migrations allow the transparent Grid
enabling of existing applications without any need to modify
them.

Support for dynamic virtualization [15, 16] is another
central feature of the kernel layer with using expert dynamic
OS. Grid OS aims to investigate hardware based
virtualization in order to use a virtualization engine using
fuzzy logic algorithm which enables the rapid creation and
destruction of on-demand virtual machines. Both the Quos
Management and kernel level process check pointing
modules allow users to regulate resource usage of
applications and to autonomously migrate them to different
nodes within a site.

Figure: 2 Grid OS Architecture

A. What do you mean by the very term shell?

A shell is a program which provides a user interface to
an operating system. It may be a text-based command line
interpreter as in Unix, or it may be a graphics-based and
process manager. Either way, the ability to repair damage to
permanent resources such as les is an important one. The
facilities which are typically provided at present are rather
primitive, consisting of a waste bin" directory where old
versions of les are stored when explicitly deleted, together
with various ad hoc backup mechanisms provided by
individual applications. It is ironic that one can always undo
the deletion of a single character in an editor, but not the
deletion of a permanent file in a shell.

The aim of this thesis is to describe a way of designing
and implementing .The aim of this thesis is to describe a
way of designing and implementing a more intelligent shell
which keeps track of versions of les on behalf of the user,
together with information about how they were created or
manipulated. This enables it to provide a more uniform and
consistent mechanism for undoing the effects of commands,

recovering old versions of files, repairing accidental damage,
and otherwise managing a user's most permanent and valuable
resources in a safe and convenient way. Besides, such a shell
creates a sophisticated working environment in operating
systems. A user can run programs under ultimate control,
monitoring their interactions with the file system. The control of
file system activities of user programs allows many new
applications to be developed and even existing ones to be
upgraded with new facilities. For example, the Unix make
program can be enhanced easily, whose design and
implementation is the additional scope of the thesis.

A. Shell Features:

As mentioned in the previous section, shells offer features
geared specifically for interactive use rather than to augment the
programming language. A shell can provide users with one or
more of the following features. Users can

a. create an environment that meets their needs,
b. write shell scripts,
c. define command aliases,
d. edit the command line.
e. manipulate the command history,
f. automatically complete the command line,
g. run lengthy tasks in the background,
h. store data in user-defined or shell-defined variables,
i. link any number of commands together (piping),
j. redirect program input and output.

These features are the primary advantages of interfacing to
the system through a shell. Unfortunately, shells don't have a
standard way of providing them. A single feature (or capability)
can be provided in different ways by different shells, which
destroys compatibility. A script file written in a shell's
programming language, for instance, may not run in another
shell as a result of the syntax variation.

B. Shell Implementation:

The Shell is the module of brush that interacts with the user
directly and initiates the execution of user-oriented tasks. It is
possible to use one of the existing shells to carry out the
function of the module. This section discusses the usability of
an existing shell that replaces the Shell and presents an
implementation of such a use.

C. Developing a Shell:

In shell-based operating systems, shells are commonly used
as command interpreters. A shell is a user interface that allows
users to access operating system resources by running various
commands. Likewise, brush is required to provide a new shell
which cooperates with the Recovery Manager during both
execution and undoing/redoing of commands. With the new
shell, user commands, except undo and redo commands, are
supposed to be interpreted in similar way to those of an ordinary
shell.

IV. CONCLUSION AND FUTURE WORK

Grid operating system which provides extensive, flexible
services for Grid architectures and it also has planned to port
Globus libraries to Grid OS thus providing a complete software
infrastructure for Grid architectures. Grid OS is not only aimed

Snehal S. Dhole et al, International Journal of Advanced Research in Computer Science, 4 (6) Special Issue, May 2013,152-156

© 2010, IJARCS All Rights Reserved 156 CONFERENCE PAPER
“A National Level Conference on Recent Trends in Information Technology and

Technical Symposium” On 09th March 2013
Organized by

Dept. of IT, Jawaharlal Darda Inst. Of Eng. & Tech., Yavatmal (MS), India

at adapting dynamic grid computing for frequently related to
the set up and administration of Grids but also it is based on
dynamic virtualization engine for Grid OS to provide
security and resource management to resource owners and
privacy to resource users. Using the virtual operating system
approach, uniformity can be achieved at the three principal
levels of user interface-- the virtual machine, the system
utilities, and the command language. For at least one
realization of the virtual machine interface, the functional
equivalence of vendor operating systems has been
established.. Although the effort to install a virtual operating
system is large when compared to the effort required when
moving a single program, it is small when compared to the
cost of moving an organization's software. Moreover, when
personnel retraining costs are considered, installation costs
are insignificant. The creation of Grid applications and the
lack of general fault tolerance within the Grid infrastructure
are also issues of concern. Grid OS is a step towards a “Plug
and Play” pervasive Grid dynamic computing environment.
It is designed to support all types of modern computations,
including batch and interactive and dynamic support the
creation of Grids of any architecture. The main contribution
of this paper is that it presents a dynamic structure for the
development of adaptive Grid OS to extend the discovery
service to enable self-healing and self organizing behavior.
Furthermore we propose that the system should embed the
capability for interoperability with existing and emerging
Grid infrastructures interface with expert dynamic OS
interact with lower host layer local OS by making the
system compliant to evolving standards in Grid computing.

V. REFERENCE

[1]. A. Iamnitchi and D. Talia, "P2P Computing and Interaction
with Grids", Future Generation Computer Systems, North-
Holland, vol. 21, no.3, pp. 331-332, 2005.

[2]. I. Foster, C. Kesselman., “Globus: A Metacomputing
Infrastructure Toolkit”, Intl J. Supercomputer Applications,
11(2):115-128, 1997

[3]. E. Laure et al., Middleware for the Next Generation grid
Infrastructure, Proceedings of the Computing in High
Energy Physics Conference, pages 826, 2004.

[4]. American National Standard FORTRAN. ANS X3.9-1966,
Amer. Nat. Standards Inst., N.Y., 1966. Contains the official
description of the programming language Fortran 66.

[5]. Snow, C.R. The software tools project. Software Practice and
Experience 8, 5 Sept.-Oct. (1978), 585-599. Describes an
implementation project on a Burroughs B 1700 computer using
an automatic code translation technique 12. Wulf, W.A.,
Russell, D.B., and Habermann,

[6]. A.N. BLISS: A language for systems programming. Comm.
ACM 14, 12 (Dec. 1971), 780-790. Describes BLISS, a
language designed to be especially suitable for use in writing
production software systems for DEC machine.

[7]. Brinch Hansen, P. Operating System Principles. Prentice-Hall,
Englewood Cliffs, N.J., 1973. Designed for readers with a
background in programming and a knowledge of elementary
calculus and probability theory, focuses on general concepts
illustrated with algorithms, techniques, and performance
figures.

[8]. B. Mathews, “Towards a Knowledge Grid: Requirements for a
Grid OS to support Next Generation Grids”, Core Grid
Workshop on NGN, Belgium, 2005

[9]. Litzkow, M. Livny, & M. Mutka, Condor – A Hunter of Idle
Workstations, Proceedings of the 8th Int. Conference of
Distributed Computing Systems, June 1988, pages 104-111.

[10]. A. Iamnitchi, I. Foster, J. Weglarz, J. Nabrzyski, J. Schopf, M.
Stroinski, in: Grid Resource Management (ed.), A Peer-to-Peer
Approach to Resource Location in Grid Environments, Kluwer
Publishing, 2003.

[11]. Barham, P. et al. “Xen and the art of virtualization”. In
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (Bolton Landing, NY, USA, October 19 -
22, 2003) SOSP '03. ACM Press, New York, NY, 164-177

[12]. Kernel Virtual Machine,http://kvm.qumranet.com/kvmwik

[13]. A book on A Sophisticated Shell Enviroment by Hauseyin
Pehlivan submitted to the university of Bristol in the faculty of
Engineering, Computer Science Department.

