
Volume 4, No. 4, March-April 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 268

A Framework for Accessing Remote Machine Configuration using Mobile Agents
Pravada S. Bharatkar

M. Tech. Scholar
Dept. of Computer Technology,

Rajiv Gandhi College of Engineering
Research and Technology, Chandrapur

pravadadilip@gmail.com

Abstract: Mobile agents (MA) systems have gained popularity in use because they ease the application design process by giving software
engineers greater flexibility. The research in MA is a rapidly growing field contributing to autonomous software agents and distributed systems.
And related is affecting the world of network computing and the agents technology is well suited for the network application. Mobility is both a
useful abstraction and tool for agent-based system designers; it allows for increased resource efficiency, capability, and robustness. It is expected
the mobile agent to be mobile and be able to do collaboration, integrating these technologies, to facilitated network user in retrieving
information. For fulfilling these aspects, the frame for accessing remote machine configuration using MA is developed. Therefore, in the present
study, the various non-java and java based mobile agent systems are studied for their strategic application in the area of integration and gathering
of the information. The InfoGatherAgent java program is designed and implemented for gathering the information from the different ports of
Aglets-Tahiti Server to reduce the network load.

Key words-mobile agents; aglets-tahiti server; infogatheragent; information gathering

I. INTRODUCTION

In the present era of technology, computers are fulfilling
an increasingly diverse set of tasks in our society. They are
providing seamless assistance to support our lifestyles
through silently assuming many mundane but key tasks, e.g.
they control our car engines, our environmental climate and
even our toasters, etc. Increasingly sophisticated hardware is
the supporting substrate for increasingly complex software.
Yet despite major advances in our understanding of the
construction of software, building flexible and reliable
systems remains a considerable task. Intensifying powerful
abstractions are employed by software engineers in an
attempt to reduce the cognitive complexity of such tasks.
Over the years computer systems have evolved from
centralized monolithic computing devices supporting static
applications, into client-server environments that allow
complex forms of distributed computing. Throughout this
evolution limited forms of code mobility have existed. The
earliest being remote job entry terminals used to submit
programs to a central computer and the latest being Java
applets downloaded from web servers into web browsers. A
new phase of evolution is now under way that goes one step
further, allowing complete mobility of cooperating
applications among supporting platforms to form a large-
scale, loosely-coupled distributed system. The catalysts for
this evolutionary path are mobile software agents-programs
that are goal-directed and capable of suspending their
execution on one platform and moving to another platform
where they resume execution.

A. Mobile Agents:

Mobile agents (MA) are autonomous software agents
that travel in a computer network to execute and perform
tasks on different hosts on behalf of their owners.
Autonomous mobile agents bring advantages such as task
delegation, network communication, and cost reduction for
distributed tasks [1]. MA systems provide a great flexibility

and customizability to distributed applications like e-
business and information retrieval in the current scenario.
The technology of MA offers a new computing paradigm in
which a program, in the form of a software agent, can
suspend its execution on a host computer, transfer itself to
another agent-enabled host on the network, and resume
execution on the new host. The use of mobile code has a
long history dating back to the use of remote job entry
systems in the 1960's. Today's agent incarnations can be
characterized in a number of ways ranging from simple
distributed objects to highly organized software with
embedded intelligence.

As such, mobile agents are processes (e.g. executing
programs) that can migrate from one machine of a system to
another machine (usually in the same system) in order to
satisfy requests made by their clients [2]. It is a software
program with mobility which can be sent out from a
computer into a network and roam among the computer
nodes in the network [3]. The key characteristic of the
mobile agent paradigm is that any host in the network is
allowed a high degree of flexibility to possess any mixture
of know-how, resources and processors. Its processing
capabilities can be combined with local resources [4]. MA
has the unique ability to transport itself from one system in a
network to another in the same network. This ability allows
it to move to a system containing an object with which it
wants to interact and then to take advantage of being in the
same host or network as the object. The huge information
regarding the use of mobile agent is found in literature [5, 6,
and 7]. The seven good reasons for use of mobile agent [8]
are described by Danny and Mitsuru. Several academic and
industrial research groups are currently investigating and
building mobile agent systems. Generally, the Non-Java and
Java based mobile agent system are existed in literatures [9].
The examples of Non-Java mobile agent systems are
Telescript [10], Agent Tcl [11], D’Agents, Ara [12],
TACOMA [13], while Java-based mobile agent systems are

Pravada S Bharatkar, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,268-273

© 2010, IJARCS All Rights Reserved 269

Aglets [14], Concordia [15], NOMADS. The representative
subset of this mobile agent system is described as follows:

a. Telescript :

Telescript is developed by General Magic in 1990’s as
the first system designed expressively to support mobile
agent in commercial application as well as object oriented
agent programming. It extensively supports security and
access control.

b. Tacoma:

Tacoma is a joint project of Norway’s University of
Tromso and Cornell Univeristy. It uses check pointing and
provides rearguard agent for tracking mobile agents as they
migrate.

c. Agent Tcl:

Agent Tcl developed at Dartmouth and allows Tcl script
to migrate between servers that support agent execution,
communication, status queries, and non-volatile storage.

d. Java:

Although not marketed as a mobile agent framework, the
Java [16] Development Kit does provide enough native
facilities to support weakly mobile code. The most widely
known examples of Java’s mobile code capabilities are
probably applets and servlets.

e. D’Agents:

Developed at Dartmouth College, D’Agents is one of the
new breeds of mobile agent framework.

f. Mole:

Mole [17] was the first mobile agent framework
developed in Java, and was initially released in 1995 by the
IPVR group of Stuttgart University.

g. Hive:

Hive is a distributed agents platform, a decentralized
system for building applications by networking local system
resources, and taking advantage of mobile code [18]. Hive is
built using the standard Java features of object serialization
and interpretation used by so many mobile agent
frameworks.

h. Voyager:

Voyager is Java based agent system developed by Object
Space features. At the time of writing Voyager currently
supports EJB [19], CORBA, DCOM, and RMI.

i. Jini:

Jini [20] is Sun Microsystem’s proposed architecture for
embedded network applications. It is built using Java and
RMI in much the same way as Hive.

j. Aglets:

The Aglet Software Development Kit (ASDK) [21] has
been developed by IBM’s Tokyo Research Labs, and was
one of the first and most publicized Java based mobile agent
frameworks released. The core abstractions supported by the
ASDK are that of an aglet, a proxy and a context.

The comparison among three Mobile Agent Systems
[22] such as Aglets, Grasshopper and Voyager, this shows
that the Aglet performs best; Voyager is better than
Grasshopper.

B. Aglets:

Aglets are a Java mobile agent platform and library that
eases the development of agent based applications. They can
able to autonomously and spontaneously move from one
host to another [23]. Originally developed at the IBM Tokyo
Research Laboratory, the Aglets technology is now hosted at
sourceforge.net as open source project, where it is
distributed under the IBM Public License. Aglets are
completely made in Java, granting a high portability of both
the agents and the platform. This includes both a complete
Java mobile agent platform, with a stand-alone server called
Tahiti, and a library that allows developer to build mobile
agents and to embed the Aglets technology in their
applications.

Currently, stable release of Aglets is available in the 2.0
series, and 2.0.2 is the latest one. Aglet has been developed
at the IBM Tokyo Research Laboratory (TRL) from Mitsuro
Oshima and Danny Lange. The original name of the project
was AWB that stands for Aglets WorkBench, changed then
simply in Aglets. IBM was responsible for the most of the
1.x releases, while from the version 2.x Aglets is totally
open source and is hosted at Sourceforge.net. The web page
of the original project, still hosted at TRL, issues: Think of
the Internet as a distributed, massively parallel
supercomputer that connects information repositories,
databases, intelligent agents, and mobile code. Imagine
sending your own personalized agents to roam the Internet.
They will monitor your favorite Web sites, get you the ticket
you couldn't get at the box office, or help you to schedule
meetings for your next overseas trip. Aglets are not the only
one mobile agent development kit, but it is quite simple to
learn and to use, and this probably helped its spread.

Aglets have been immediately involved in the realization
of TabiCan, a kind of virtual agent-populated travel agency.
Unfortunately, after a good start, IBM decided to give
Aglets to the open source community, and this is when
SourceForge appears. In the beginning, the SourceForge
releases have been only bug-fix ones, but then something
changed and the library version evolved to 2.x series. The
2.x thread has new improvements in the security
management, and is more compatible with the Java 2
security mechanism than the 1.x releases. Furthermore, it
includes a log4j based logging system and a few bug-fixes
of the older version. After a couple of releases in the 2.x
branch, the development stopped again. Now, starting from
the 2.0.2 release, the development is going to restart, so stay
tuned for newer versions.

C. Information Gathering:

The past several years have witnessed the rapid
development of the World Wide Web (WWW). WWW has
been a vast repository of information. Today, these Webs'
size, dynamic and distribution nature put a significant
amount of time and effort to locate, retrieve and integrate
the desired information. Currently, Web crawlers, which
traverse numerous webs by following hyperlinks and storing
downloaded pages in a large database that is later indexed
for efficient execution of user queries, are mainly used tools
for information gathering. But there exist two limitations
that can weaken crawlers' efficiency. One is even the largest
and the most powerful search engines, such as Google,
cover only limited parts of the webs. Another is many of the
data that crawlers gathered is several months out of date.

Pravada S Bharatkar, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,268-273

© 2010, IJARCS All Rights Reserved 270

With the popularity of MA technology, the information
gathering system in combination with MA and web crawlers
is more powerful and more efficient. Utilizing mobile agent
technology, the information gathering system's capacity is
improved. The proliferation of the diverse information in the
internet makes the information gathering via a single mobile
agent difficult. In addition, the limitations of the
traditionally sequential task restrain the single agent to be
applied to large, complicate applications. As a result, the
applicable scope of a single mobile agent is limited. The
advent of the collaborating multi-agents infrastructure not
only alleviates this difficulty of gathering information
throughout networks but also makes the ubiquitous internet
computing possible.The in-depth example of the use of
agents for an important class of problems i.e.` information
gathering [24] is provides by He et al. They constructed a
model of Web information gathering based on Mobile Agent
technology, and the design of the model and the working
process is introduced. A model of cooperating working for
information gathering and a kind of arithmetic to implement
this model are given. In addition, the upgrade of information
gathered is implemented by making use of Mobile Agent
technology. Aneiba and Rees addressed mobile agent as
tools for mobile computing and these have been used in
applications ranging from network management to
automatic software distribution, as well as information
management [25]. Mobile agent architecture is developed by
Jonathan and DeRoure for distributed information
management [26]. A brief overview and an elaborate case
study for mobile agents [27] and their use for information
retrieval are presented by Glitho et al.

The model of information gathering system is composed
of many mobile agents and an agent server. The agent server
mainly focuses on implementing the control of information
gathering, management of the whole system, and the
cooperative working of those mobile agents. The agent
server's functions could be depicted as producing and
initiating all mobile agents ,managing the execution of all
mobile agents, guaranteeing the security of the mobile
agents and receiving and processing the information sent by
mobile agents, managing the saved Web information
database. The functions of mobile agent in this system
includes moving intelligently in specific network domain,
crawling on the Webs, gathering the useful information,
monitoring the change of Webs, recording the working
status itself. The structure the Information Gathering Model
and working process is detailed in [24].

In view of the popularity of MA technology for
information gathering, the java based mobile agent systems
such as Aglets is studied in the present study, for their
strategic application in the area of integration and gathering
of the information. The InfoGatherAgent java program is
designed and implemented for gathering the information
from the different ports of Tahiti to reduce the network load.

II. MATERIALS AND METHOD

Aglet is a very popular mobile system. It is designed
especially for creating mobile applications and has a very
complete and complex API for mobile agent. In the present
study, Aglet SDK is used as the mobile agent platform for
the development of secure data transfer. The Aglet Software
Development Kit (ASDK) is an implementation of the Aglet
API. It includes Aglet API packages, documentation, sample

agents, and the Tahiti Aglet server. This Aglet Workbench
works on JDK1.1 or higher versions. It is qualified to run on
Win95/XP/NT and SPARC/Solaris 2.5 [28].

A. Running the Aglet Server:

For launching the Aglets first of all user need to start the
aglets server, which can be started using the script file ‘c:\cd
aglets2.0.2’. The login screen can be open by command
C:\Aglets2.0.2>Agletsd.

B. Running Tahiti:

The aglet server will involve an aglet viewer, named
Tahiti, for managing aglets. The user has to run the Aglets
application through server called Tahiti. So, start it up with
the agletsd command and create one of the provided agents
(or aglets) to see whether everything works. Observe the
MSDOS window. It should not display any error message
(some non-error output is fine). The default port number as
defined in aglets is port-4434. If you want to run an
additional Tahiti server on the same machine, start it up with
another port address, e.g., 2000.

C. Design of MA Program:

A simple agent consists of basically the main class and
two methods on Creation () and run () [7]. First start by
importing the aglet package, which contains all the
definitions of the Aglet API. Next define the MyFirstAglet
class, which inherits from the Aglet class:

Import com.ibm.aglet;
Public class MyFirstAglet extends Agent
 {
 // aglet’s method here…….
 }
For example, if user wants your aglet to perform some

specific initialization when it is created, user can override
it’s on Creation method:

Public void on Creation (Object init)
 {
 //Do some initialization here…….
 }
When an aglet has been created or when it arrives in a

new context, it is given its own thread of execution through
a system invocation of its run method. The run method is
called every time the aglet arrives at or is activated in a new
context. So the run method becomes the main entry point for
the aglet’s thread of execution.

Public void run ()
 {
 //Do something else here…..
 }

III. RESULTS AND DISCUSSION

The design of mobile agent and its implementation for
the information gathering required to create two Tahiti
servers for listening on different ports as described earlier.
Two Tahiti servers are created using the script file ‘c:\cd
aglets2.0.2’. The default port 4434 is created by Tahiti and
for the creation of port 2000, it can be given as ‘c:\cd
aglets2.0.2>’. Now, write as ‘c:\aglets2.0.2> agletsd-port
2000’. Similar procedure can be repeat for the creation of
port 3000 as c:\aglets2.0.2>agletsd-port 3000’. After issuing
the commands on command prompt, the following screen is
displayed as shown in figure 1.

Pravada S Bharatkar, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,268-273

© 2010, IJARCS All Rights Reserved 271

Figure 1. Tahiti Windows for Ports-4434, 2000, and 3000

Since, the main objective of the present study is to gather
the information like user name, from different port address
such as port 2000, port 3000, etc., the InfoGatherAgent.java
program is created under jdk. The purpose of this program is
to gather information from remote machines, which are part
of a distributed system connected through LAN.
InfoGatherAgent creates a Command Window GUI to
obtain itinerary. Once URLs are given, visits each URL
collects the required information and returns back to that
URL where it has to display the result. Using Command
Window displays the gathered information. The created
‘InfoGatherAgent.java’ program is stored in public
subdirectory aglet 2.0.2 as shown in the figure 2.

Figure 2. Agent Creation Dialog Window

Now, to gather the information from different ports of
Tahiti server to default port address 4434, click on the create
option of aglet menu. It displayed the list of programs from
which the IngoGatherAgent program is selected. Click on
create option at the bottom of the display box as shown in
figure 3.

Figure 3. Agent list

After selecting the program “InfoGatherAgent” from
create list, the following screen is displayed as shown in
figure 4.

Figure 4. Tahiti selecting InfoGatherAgent

Now, click on Dialog menu to select port of the address
from which we want to gather the information and to display
the gathered information. This displayed the AddressBook
for the selection of various ports addresses as shown in
figure 5.

Figure 5. AddressBook Dialog Window

Next select the port -2000 from AddressBook, for
getLocalInfo, and port-3000 for geLocalInfo, and port-
4434 for printResult i.e. gather the information from port -
2000 and port-3000 and print the gathered result on port-
4434 as shown in figure 6 (a and b).

Pravada S Bharatkar, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,268-273

© 2010, IJARCS All Rights Reserved 272

Figure 6 (a). Portaddress References Dialog Window

Figure 6 (b). Portaddress References Dialog Window (After Selection)

After completing the port selection criteria, click on the
Start! button at the bottom of the portaddress reference
dialog window. The InfoGatherAgent crawled to every port
and gathered the information or data as per the
InforGatherAgent.java program as shown in the figure 7
given below. Thus, the designed configuration of mobile
agent as “InfoGatherAgent” gathered the information from
different ports, which helps to reduce the network load and
overcome the network latency.

Figure 7. Portaddress References Dialog Window showing Informaation

Gathered from Different Port Addresses.

IV. CONCLUSIONS

InfoGatherAgents program was designed, implemented
and tested for information gathering from different ports.
The designed InfoGatherAgents crawls to different ports e.g.
Port 2000, Port 3000 for collecting the information about
system status such as user name, user home, user directory,
processor family, OS family, OS version, java version, etc.
In the same fashion, the information from different ports can
be gathered, when very large volumes of data are stored at
remote hosts, that data should be processed in its locality
rather than transferred over the network. Overall, the motto
for InfoGatherAgent-based data processing is simple such as
to move the computation to the data rather than the data to
the computation. Thus, it can be useful for reducing the flow
of raw data in the network.

V. REFERENCES

[1]. J. Gosling, B. Joy, B. and G. Steele. Java Language
Specification. Addison-Wesley, Reading, MA, 1996.

[2]. S. Adnan, J. Datuin, P. Yalamanchili. Survey of Mobile
Agent Systems. URL:
http://www.cs.ucsd.edu/classes/sp00/cse221/reports/dat-
yal-adn.pdf

[3]. N. Suri, M. Carvalho, R. Bradshaw, and J. M. Bradshaw.
Small mobile
agentplatforms.URL:http://autonomousagents.org/ubiquito
usagents/papers/papers/32.pdf.

[4]. Zhaohui Hu. Mobile Agent Systems: An Overview.
Research on Applications of Computer Technology. No.
10, 2000.

[5]. J. Cheng and V. Wei. Defenses Against the Truncation of
Computation Results of Free-roaming Agents. Proceedings
of 4th International Conference on Information and
Communications Security, Lecture Notes in Computer
Science, 2513: 1-12, 2002.

[6]. J. Zhou, J. Onieva and J. Lopez. Analysis of a Free
Roaming Agent Result-Truncation Defense Scheme.
Proceedings of 2004 IEEE Conference on Electronic
Commerce, San Diego, USA, IEEE Computer Society
Press, pages 221-226, 2004.

[7]. J. Zhou, J. Onieva and J. Lopez. Protecting Free Roaming
Agents against Result-Truncation Attack. Proceedings of
60th IEEE Vehicular Technology Conference, Los Angles,
USA, pages 3271-3274, 2004.

[8]. D. Lange, and M. Oshima. Seven good reasons for mobile
agents. Communications of the ACM, ISSN: 0001-0782,
42(3), March 1999.

[9]. Maria Fasli. Agent Technology for e-Commerce - Chapter
11: Mobile Agents.
URL:http://cswww.essex.ac.uk/staff/mfasli/ATe-
Commerce.htm

[10]. J. White. Telescript Technology: Mobile Agents, General
Magic White Paper. URL: http://www.genmagic.com/

[11]. J. Ousterhout, “Agent TCL”, 1997,
URL:http://agent.cs.dartmouth.edu/ general/ agenttcl.html

[12]. H. Peine, T. Stolpmann. The Architecture of the Ara
platform for mobile Agents. Proc. of the First International

Pravada S Bharatkar, International Journal of Advanced Research in Computer Science, 4 (4), March –April, 2013,268-273

© 2010, IJARCS All Rights Reserved 273

Workshop on Mobile Agents MA’97, Berlin, Springer
Verlag, April 7-8, 1997.

[13]. D. Johansen,V. Renesse, and F. Schneider. Operating
system support for mobile agents. Proc. of the 5th. IEEE
HOTOS Workshop, Orcas Island, USA, 4-5 May, 1995.

[14]. Aglets platform. 2004. URL:
http://www.research.ibm.com/trl/ aglets/spec10.htm

[15]. Concordia. Concordia: An Infrastructure for Collaborating
Mobile Agents. Proc. of Workshop On mobile agents
MA’97, Berlin, LNCS 1219, Springer Verlag, April 7-8th,
1997.

[16]. Java tutorial available at www.java.sun.com/tutorials

[17]. M. Straßer, J. Baumann, and F. Hohl. Mole - A java Based
Mobile Agent System. Proc. ECOOP’1996 workshop on
Mobile Object Systems.

[18]. N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes.
Hive: Distributed Agents for Networking Things.
Proceedings of ASA/MA‘1999.

[19]. Sun Microsystems Inc. Enterprise Javabeans Specification.
Version 1.1, 1999, available at
http://java.sun.com/products/ ejb/docs.html

[20]. K. Arnold, A. Wollrath, B. O’Sullivan, R. Sheifler and J.
Waldo. The Jini Specification. Addison-Wesley, 1999.

[21]. D. B. Lange, and M. Oshima. Mobile Agents with Java:
The Aglet API. World Wide Web Journal, 1998.

[22]. Zhao Qunhua, Wang Hua and Zhang Yi. Comparison
Study of Three Mobile Agent Systems Aglets, Grasshopper
and Voyager. Department of Computer Science and
Engineering University of Connecticut.

[23]. Aglet, 2004, http://www.aglets. sourceforge.net/

[24]. Yongchun He, Cong Wang and Jian Qiu. An Information
Gathering Model Based on Mobile Agents. IEEE, pages
225-228, 2005.

[25]. Adel Aneiba and S. J. Rees. Mobile Agents Technology
and Mobility. Staffordshire University, PO BOX 334,
Beaconside, Stafford ST18 ODG, UK.

[26]. D. Jonathan, and D. DeRoure. A Mobile Agent
Architecture for Distributed Information Management.
Proceedings of the International Workshop on the Virtual
Multicomputerm, March 1997.

[27]. R. H. Glitho, E. Olougouna, and S. Pierre. Mobile Agents
and Their Use for Information Retrieval: A Brief Overview
and an Elaborate Case Study. Ericsson Res., Montreal, Que
IEEE, 16(1):34-41, (ISSN: 0890-8044, INSPEC Accession
Number: 7165883), Jan/Feb 2002.

[28]. Aglets framework available at www.trl.ibm.co.jp/aglets.

