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Abstract: Ant colony optimization (ACO) takes inspiration from the foraging behaviour of some ant species. These ants deposit pheromone on the 
ground in order to mark some favourable path that should be followed by other members of the colony. Ant colony optimization exploits a similar 
mechanism for solving optimization problems. This protocol is highly adaptive, efficient, scalable and reduces the overhead for routing. Ant 
Algorithms are used to find the shortest route in Mobile Ad Hoc Networks. ACO has been widely applied to solving various combinatorial 
optimization problems such as Traveling Salesman Problem (TSP), Job-shop Scheduling Problem (JSP), Vehicle Routing Problem (VRP), Quadratic 
Assignment Problem (QAP), etc. The behaviour of ACO algorithms and the ACO model are analysed for certain types of permutation problems. It is 
shown analytically that the decisions of an ant are influenced in an intriguing way by the use of the pheromone information and the properties of the 
pheromone matrix. This paper provides a brief outline of some significant applications of ACO algorithms. In this paper we are considering the 
applications to problems with nonstandard features and we have also discussed the use of ACO in TSP. ACO is taken as one of the high performance 
computing methods for TSP. Metaheuristic algorithm is an efficient method to obtain near-optimal solutions of NP-hard problems.   
 
Keywords: metaheuristic; stochastic; swarm; overhead and mobile ad hoc network.    

I. INTRODUCTION 

Ant colony optimization (ACO) [1][2][3] is a metaheuristic 
for solving hard combinatorial optimization problems inspired 
by the indirect communication of real ants. The basic idea of 
the ant colony optimization metaheuristic is taken from the 
food searching behavior of real ants. When ants are on the way 
to search for food, they start from their nest and walk toward 
the food. When an ant reaches an intersection, it has to decide 
which branch to take next. While walking, ants deposit 
pheromone, which marks the route taken. The concentration of 
pheromone on a certain path is an indication of its usage. With 
time the concentration of pheromone decreases due to diffusion 
effects. This property is important because it is integrating 
dynamic into the path searching process (figure 1). At the 
intersection, the first ants randomly select the next branch. 
Since the below route is shorter than the upper one, the ants 
which take this path will reach the food place first. On their 
way back to the nest, the ants again have to select a path. After 
a short time the pheromone concentration on the shorter path 
will be higher than on the longer path, because the ants using 
the shorter path will increase the pheromone concentration 
faster. The shortest path will thus be identified and eventually 
all ants will only use this one. This behaviour of the ants can be 
used to find the shortest path in networks. 

In ACO algorithms, (artificial) ants construct candidate 
solutions to the problem being tackled, making decisions that 
are stochastically biased by numerical information based on 
(artificial) pheromone trails and available heuristic information. 
The pheromone trails are updated during algorithm execution 
to bias the ants search toward promising decisions previously 
found. Despite being one of the youngest metaheuristics, the 
number of applications of ACO [1][2][3] algorithms is very 
large. In principle, ACO can be applied to any combinatorial 

optimization problem for which some iterative solution 
construction mechanism can be conceived. Most applications 
of ACO [1][3] deal with Nonstandard problems, that is, to 
handle problems with multiple objectives, stochastic data, and 
dynamically changing problem information. There are 
extensions of the ACO metaheuristic for dealing with problems 
with continuous decision variables, as well. This paper 
provides a concise overview of several noteworthy applications 
of ACO [1] [3] algorithms. This overview is necessarily 
incomplete because the number of currently available ACO 
applications goes into the hundreds.  

 

 
Figure 1.  Food searching behaviour of real Ants. 

Section II describes briefly ACO Routing Algorithm; 
Section III illustrates the Applications to problems with Non-
Standard features. Finally this paper is concluded in Section 
IV. 

II. ACO ROUTING ALGORITHM 

The routing algorithm is very similar constructed as many 
other routing approaches and consists of three phases.  
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A. Route Discovery Phase 

In the route discovery phase new routes are created. The 
creation of new routes requires the use of a forward ant 
(FANT) and a backward ant (BANT). A FANT is an agent 
which establishes the pheromone track to the source node. In 
contrast, a BANT establishes the pheromone track to the 
destination node. The FANT is a small packet with a unique 
sequence number. Nodes are able to distinguish duplicate 
packets on the basis of the sequence number and the source 
address of the FANT[1][3].  

A forward ant is broadcasted by the sender and will be 
relayed by the neighbours of the sender (figure 2). A node 
receiving a FANT for the first time creates a record in its 
routing table. A record in the routing table is a triple and 
consists of (destination address, next hop, pheromone value). 
The node interprets the source address of the FANT as 
destination address, the address of the previous node as the 
next hop, and computes the pheromone value depending on the 
number of hops the FANT needed to reach the node. Then the 
node relays the FANT to its neighbours. Duplicate FANTs are 
identified through the unique sequence number and destroyed 
by the nodes.  

 
Figure 2.  Relay using FANT. 

When the FANT reaches the destination node, it is 
processed in a special way [1][3]. The destination node extracts 
the information of the FANT and destroys it. Subsequently, it 
creates a BANT and sends it to the source node (figure 3). 

 
Figure 3.  Relay using FANT. 

The BANT has the same task as the FANT, i.e. establishing 
a track to this node. When the sender receives the BANT from 
the destination node, the path is established and data packets 
can be sent. Figures 2 and 3 schematically depict the route 
discovery phase. In the depicted case, node 3 has two ways for 
the path, via node 4 and over node 6. In our case, the forward 
ant creates only one pheromone track toward the source node, 
but the backward ant creates two pheromone tracks toward the 
destination node. So multi-path routing is also supported by 
ARA [1]. 

B. Route Maintenance Phase: 

The second phase of the routing algorithm is called route 
maintenance, which is responsible for the improvement of the 
routes during the communication. ARA [1][2][3] does not need 

any special packets for route maintenance. Once the FANT and 
BANT have established the pheromone tracks for the source 
and destination nodes, subsequent data packets are used to 
maintain the path.  

Similar to the nature, established paths do not keep their 
initial pheromone values forever. When a node vi relays a data 
packet toward the destination vD to a neighbour node vj, it 
increases the pheromone value of the entry (vD, vj, �) by Δ�, 
i.e., the path to the destination is strengthened by the data 
packets. In contrast, the next hop vj increases the pheromone 
value of the entry (vS, vi, �) by Δ�, i.e. the path to the source 
node is also strengthened. ARA prevents loops by a very 
simple method, which is also used during the route discovery 
phase. Nodes can recognize duplicate receptions of data 
packets, based on the source address and the sequence number. 
If a node receives a duplicate packet, it sets the DUPLICATE 
ERROR flag and sends the packet back to the previous node. 
The previous node deactivates the link to this node, so that data 
packets cannot be send to this direction any more.  

C. Route Failure Handling: 

The third and last phase of ARA handles routing failures, 
which are caused especially through node mobility and thus 
very common in mobile ad-hoc networks. ARA [1] recognizes 
a route failure through a missing acknowledgement. If a node 
gets a ROUTE ERROR message for a certain link, it first 
deactivates this link by setting the pheromone value to 0. Then 
the node searches for an alternative link in its routing table. If 
there exists a second link it sends the packet via this path. 
Otherwise the node informs its neighbours, hoping that they 
can relay the packet. Either the packet can be transported to the 
destination node or the backtracking continues to the source 
node. If the packet does not reach the destination, the source 
has to initiate a new route discovery phase. 

III. APPLICATIONS TO PROBLEMS WITH 

NONSTANDARD FEATURES 

A. Multiobjective Optimization: 

In many real-world problems, candidate solutions are 
evaluated according to multiple, often conflicting objectives. 
Sometimes the importance of each objective can be exactly 
weighted, and hence objectives can be combined into a single 
scalar value by using, for example, a weighted sum. This is the 
approach used by Doerner et al. [29] for a biobjective 
transportation problem. In other cases, objectives can be 
ordered by their relative importance in a lexicographical 
manner. Gambardella et al. [4] proposed a two-colony ACS 
algorithm for the vehicle routing problem with time windows, 
where the first colony improves the primary objective and the 
second colony tries to improve the secondary objective while 
not worsening the primary one [48].  

When there is no a priori knowledge about the relative 
importance of objectives, the goal usually becomes to 
approximate the set of Pareto-optimal solutions—a solution is 
Pareto optimal if no other solution is better or equal for all 
objectives and strictly better in at least one objective. Iredi et 
al. [5] were among the first to discuss various alternatives for 
extending ACO to multiobjective problems in terms of Pareto-
optimality. They also tested a few of the proposed variants on a 
biobjective scheduling problem. Another early work is the 
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application of ACO to multiobjective portfolio problems by 
Doerner et al. [6,7].  

Later studies have proposed and tested various 
combinations of alternative ACO algorithms for multiobjective 
variants of the QAP [8,9], the knapsack problem [10], activity 
crashing [11], and the biobjective orienteering problem [12]. 
Garc´ıa-Mart´ınez et al. [13] reviewed existing multiobjective 
ACO algorithms and carried out an experimental evaluation of 
several ACO variants using the bicriteria TSP as a case study. 
Angus and Woodward [30] give another detailed overview of 
available multiobjective ACO algorithms. 

B. Stochastic Optimization Problems: 

In stochastic optimization problems, data are not known 
exactly before generating a solution. Rather, because of 
uncertainty, noise, approximation, or other factors, what is 
available is stochastic information on the objective function 
value(s), on the decision variable values, or on the constraint 
boundaries. The first application of ACO algorithms to 
stochastic problems was to the probabilistic TSP (PTSP). In the 
PTSP, each city has associated a probability of requiring a 
visit, and the goal is to find an a priori tour of minimal 
expected length over all cities. Bianchi et al. [16] and Bianchi 
and Gambardella [17] proposed an adaptation of ACS for the 
PTSP. Very recently, this algorithm was improved by 
Balaprakash et al. [18], resulting in a state-of-the-art algorithm 
for the PTSP. Other applications of ACO to stochastic 
problems include vehicle routing problems with uncertain 
demands [19], and the selection of optimal screening policies 
for diabetic retinopathy [20]. The latter approach builds on the 
S-ACO algorithm proposed earlier by Gutjahr [32].  

Table I.  Applications of ACO Algorithms to Nonstandard Problems. 

Problem 
Type 

Problem Name References 

Multi- 
objective 

Scheduling 
Portfolio Selection 

Quadratic Assignment 
 

Knapsack 
Traveling Salesman 

 
Activity Crashing 

Orienteering 

Iredi et al. [5] 
Doerner et al. [6,7] 

L´opez-Ib´a˜ nez et al. 
[8,9] 

Alaya et al. [10] 
Garc´ıa-Mart´ınez et al. 

[11] 
Doerner et al. [12] 
Schilde et al. [13] 

Continuous Neural Networks 
Test Problems 

Socha and Blum [14] 
Socha and Dorigo [15] 

Stochastic Probabilistic TSP 
 
 
 

Vehicle Routing 
Screening Policies 

Bianchi et al. [16] 
Bianchi and 

Gambardella [17] 
Balaprakash et al. [18] 

Bianchi et al. [19] 
Brailsford et al. [20] 

Dynamic Network Routing 
 

Dynamic TSP 
 
 
 
 

Vehicle routing 

Di Caro and Dorigo [21] 
Di Caro et al. [22] 

Guntsch and Middendorf 
[23,24] 

Eyckelhof and Snoek [25] 
Sammound et al. [26] 

 
Montemanni et al. [27] 

Donati et al. [28] 

 

C. Dynamic Optimization Problems: 

Dynamic optimization problems are those whose 
characteristics change while being solved. ACO algorithms 
have been applied to such versions of classical NP-hard 
problems. Notable examples are applications to dynamic 
versions of the TSP, where the distances between cities may 
change or where cities may appear or disappear [23–26]. More 
recently, Montemanni et al. [27] and Donati et al. [28] discuss 
applications of ACS to dynamic vehicle routing problems, 
reporting good results on both artificial and real world 
instances of the problem. Other notable examples of dynamic 
problems are routing problems in communication networks, 
which are discussed in the following section [48]. 

D. Communication Network Problems: 

Some system properties in telecommunication networks, 
such as the availability of links or the cost of traversing links, 
are time-varying. The application of ACO algorithms to 
routing problems in such networks is among the main success 
stories in ACO. One of the first applications by 
Schoonderwoerd et al. [32] concerned routing in circuit-
switched networks, such as classical telephone networks. The 
proposed algorithm, called ABC, was demonstrated on a 
simulated version of the British Telecom network. A very 
successful application of ACO to dynamic network routing is 
the AntNet algorithm, proposed by Di Caro and Dorigo 
[21,33].  

AntNet was applied to routing in packet-switched networks, 
such as the Internet. Experimental studies compared AntNet 
with many state-of-the-art algorithms on a large set of 
benchmark problems under a variety of traffic conditions [21]. 
AntNet proved to be very robust against varying traffic 
conditions and parameter settings, and it always outperformed 
competing approaches.  

Several other routing algorithms based on ACO have been 
proposed for a variety of wired network scenarios [34,35]. 
More recent applications of these strategies deal with the 
challenging class of mobile ad hoc networks (MANETs). 
Because of the specific characteristics of MANETs (very high 
dynamics and link asymmetry), the straight forward application 
of the ACO algorithms developed for wired networks has 
proven unsuccessful [36]. Nonetheless, an extension of AntNet 
that is competitive with state-of-the-art routing algorithms for 
MANETs has been proposed by Ducatelle et al.  [37]. For 
recent, in-depth reviews of applications of ACO to dynamic 
network routing problems, we refer to Refs 38 and 39. 

E. Continuous Optimization Problems: 

Continuous optimization problems arise in a large number 
of engineering applications. Their main difference from 
combinatorial problems, which were the exclusive application 
field of ACO in the early research efforts, is that decision 
variables in such problems have a continuous, real-valued 
domain. Recently, various proposals have been made on how 
to handle continuous decision variables within the ACO 
framework [40–42]. In the continuous ACO algorithm 
proposed by Socha and Dorigo [15], probability density 
functions, explicitly represented by Gaussian kernel functions, 
correspond to the pheromone models. Extensions of this 
approach also exist for mixed-variable—continuous and 
discrete—problems [43]. A notable application of ACO 
algorithms for continuous optimization is the training of feed-
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forward neural networks [14]. Interestingly, there exist also 
successful applications of ACO to continuous problems that 
discretize the real-valued domain of the variables. An example 
is the PLANTS algorithm for the protein–ligand docking 
problem, which combines a discrete ACO algorithm with a 
local search that works on the continuous domain of the 
variables.  

F. Industrial Applications: 

While most research is done on academic applications, 
commercial companies have started to use ACO algorithms for 
real-world applications. The company AntOptima 
(www.antoptima.com) develops and markets ACO-based 
solution methods for tackling industrial vehicle routing 
problems. Features common to real-world applications are 
time-varying data, multiple objectives, or the availability of 
stochastic information about events or data. Moreover, 
engineering problems often do not have a mathematical 
formulation in the traditional sense. Rather, algorithms have to 
rely on an external simulator to evaluate the quality and 
feasibility of candidate solutions. Examples of applications of 
ACO relying on simulation are the design [44] and operation 
[45] of water distribution networks. Other interesting real-
world applications are those of Gravel, Price and Gagn´e, who 
applied ACO to an industrial scheduling problem in an 
aluminum casting center, and those of Bautista and Pereira 
[46,47], who successfully applied ACO to solve an assembly 
line balancing problem for a bike line assembly. 

IV. ACO IN TRAVELING SALESMAN PROBLEM 

ACO has been widely applied to solving various 
combinatorial optimization problems such as Traveling 
Salesman Problem (TSP), Job-shop Scheduling Problem (JSP), 
Vehicle Routing Problem (VRP), Quadratic Assignment 
Problem (QAP), etc. Although ACO has a powerful capacity to 
find out solutions to combinational optimization problems, it 
has the problems of stagnation and premature convergence and 
the convergence speed of ACO is very slow. Those problems 
will be more obvious when the problem size increases. 
Therefore, several extensions and improvements versions of 
the original ACO algorithm were introduced over the years. 
Various adaptations: dynamic control of solution construction, 
emergence of local search, a strategy is to partition artificial 
ants into two groups: scout ants and common ants and new 
pheromone updating strategies [49], using candidate lists 
strategies are studied to improve the quality of the final 
solution and lead to speedup of the algorithm. All these studies 
have contributed to the improvement of the ACO to some 
extents, but they have little obvious effect on increasing the 
convergence speed and obtaining the global optimal solution.  

Traveling salesman problem (TSP) [49] is one of the well-
known and extensively studied problems in discrete or 
combinational optimization and asks for the shortest roundtrip 
of minimal total cost visiting each given city (node) exactly 
once. TSP is an NP-hard problem and it is so easy to describe 
and so difficult to solve. Ant System was first introduced and 
applied to TSP by Marco Dorigo. Initially, each ant is 
randomly put on a city. During the construction of a feasible 
solution, ants select the following city to be visited through a 
probabilistic decision rule. Graph theory defines the problem as 
finding the Hamiltonian cycle with the least weight for a given 

complete weighted graph. It is widespread in engineering 
applications and some industrial problems such as machine 
scheduling, cellular manufacturing and frequency assignment 
problems can be formulated as a TSP. A complete weighted 
graph G= (N, E) can be used to represent a TSP, where N is the 
set of n cities and E is the set of edges (paths) fully connecting 
all cities. Each edge (i,j)�E is assigned a cost dij, which is the 
distance between cities i and j. dij can be defined in the 
Euclidean space and is given as follows: 

 
dij = √(( xi − x j ) 2 + ( yi − y j ) 2) 

 
In TSP, the main modifications introduced by ACO are the 

following. First, to avoid search stagnation and ACO is more 
effective if ants are initially placed on different cities. Second, 
information entropy is introduced which is adjust the 
algorithm’s parameters. Additionally, the best performing ACO 
algorithms for the TSP [49] improve the solutions generated by 
the ants using local search algorithms.  

V. CONCLUSION  

Nowadays, ACO is a well-established metaheuristic applied 
to a wide range of optimization problems and with hundreds of 
successful implementations. By analyzing the many available 
ACO implementations, one can identify ingredients necessary 
for the successful application of ACO. Firstly, an effective 
mechanism for iteratively constructing solutions must be 
available. Ideally, this construction mechanism exploits 
problem-specific knowledge by using appropriate heuristic 
information. Secondly, the best performing ACO algorithms 
have specialized features that allow to carefully controlling the 
balance between the exploration of new solutions and the 
intensification of the search around the best solutions. Thirdly, 
the usage of local search algorithms for improving the solutions 
constructed by the ants is very successful in practice. Finally, 
the integration of other techniques such as constraint 
programming, tree search techniques, or multilevel frameworks 
often yields a further improvement in performance or increases 
the robustness of the algorithms. ACO has been widely applied 
to solving various combinatorial optimization problems such as 
Traveling Salesman Problem (TSP), Job-shop Scheduling 
Problem (JSP), Vehicle Routing Problem (VRP), Quadratic 
Assignment Problem (QAP), etc. This paper provides a brief 
outline of some significant applications of ACO algorithms. In 
this paper we are considering the applications to problems with 
nonstandard features and we have also discussed the use of 
ACO in TSP. This overview is necessarily incomplete because 
the number of currently available ACO applications goes into 
the hundreds. 

VI. REFERENCES 

[1] Mesut G¨unes¸, Udo Sorges, Imed Bouazizi, ARA – The Ant-
Colony Based Routing Algorithm for MANETs, 
InternationalWorkshop on Ad Hoc Networking (IWAHN 
2002), Vancouver, British Columbia, Canada, August 18-21, 
2002 

[2] Dorigo M, Di Caro G. The Ant Colony optimization meta-
heuristic. In: Corne D, Dorigo M, Glover F, editors. New 
ideas in optimization.London: McGraw Hill; 1999. pp. 11–
32. 



H.Vignesh Ramamoorthy et al, International Journal of Advanced Research in Computer Science, 4 (4), March–April, 2013,224-229 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                       228 

[3] Dorigo M, Di Caro G, Gambardella LM. Ant algorithms for 
discrete optimization. Artif Life 1999;5(2):137–172.  

[4] Gambardella LM, Taillard ED, Agazzi G. MACS-VRPTW: a 
multiple ant colony system for vehicle routing problems with 
time windows. In: Corne D, Dorigo M, Glover F, editors. 
New ideas in optimization. London: McGraw Hill; 1999. pp. 
63–76. 

[5] Iredi S,MerkleD,MiddendorfM. Bi-criterion optimization 
with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele 
L, et al., editors. Volume 1993, 1st International Conference 
on Evolutionary Multi-Criterion Optimization, (EMO’01), 
Lecture Notes in Computer Science. Heidelberg: Springer; 
2001. pp. 359–372. 

[6] Doerner KF, Gutjahr WJ, Hartl RF, et al. Ant colony 
optimization in multiobjective portfolio selection. In: 
Proceedings of the Fourth Metaheuristics International 
Conference; 2001. pp. 243–248.  

[7] Doerner KF, Gutjahr WJ, Hartl RF, et al. Pareto ant colony 
optimization: a metaheuristic approach to multiobjective 
portfolio selection. Ann Oper Res 2004;131:79–99.  

[8] L´opez-Ib´a˜ nezM, Paquete L, St ¨ utzle T.On the design of 
ACO for the biobjective quadratic assignment problem. In: 
Dorigo M, et al., editors. Volume 3172, Ant Colony 
Optimization and Swarm Intelligence: 4th International 
Workshop, ANTS 2004, Lecture Notes in Computer Science. 
Heidelberg: Springer; 2004. pp. 214–225.  

[9] L´opez-Ib´a˜ nez M, Paquete L, St ¨ utzle T. Hybrid 
population-based algorithms for the bi-objective quadratic 
assignment problem. J Math Model Algorithms 2006;5(1): 
111–137.  

[10] Alaya I, Solnon C, Gh´edira K. Ant colony optimization for 
multi-objective optimization problems. Volume 1, 19th IEEE 
International Conference on Tools with Artificial Intelligence 
(ICTAI 2007). Los Alamitos (CA): IEEE Computer Society 
Press; 2007. pp. 450–457.  

[11] Garc´ıa-Mart´ınez C, Cord´on O, Herrera F. A taxonomy and 
an empirical analysis of multiple objective ant colony 
optimization algorithms for the bi-criteria TSP.Eur JOper Res 
2007;180(1):116–148.  

[12] Doerner KF, Gutjahr WJ, Hartl RF, et al. Nature-inspired 
metaheuristics in multiobjective activity crashing. Omega 
2008; 36(6):1019–1037.  

[13] Schilde M, Doerner KF, Hartl RF, et al. Metaheuristics for 
the bi-objective orienteering problem. Swarm Intell 2009; 
3(3):179–201. 

[14] Socha K, Blum C. An ant colony optimization algorithm for 
continuous optimization: An application to feed-forward 
neural network training. Neural Comput Appl 2007; 
16(3):235–247.  

[15] Socha K, Dorigo M. Ant colony optimization for continuous 
domains. Eur J Oper Res 2008;185(3):1155–1173. 

[16] Bianchi L, Gambardella LM, Dorigo M. An ant colony 
optimization approach to the probabilistic traveling salesman 
problem. In: Merelo JJ, et al., editors. Volume 2439, 
Proceedings of PPSN-VII, 7th International Conference on 
Parallel Problem Solving from Nature, Lecture Notes in 
Computer Science. Heidelberg: Springer; 2002. pp. 883–892. 

[17] Bianchi L, Gambardella LM. Ant colony optimization and 
local search based on exact and estimated objective values for 
the probabilistic traveling salesman problem, Manno: IDSIA; 
2007. USI-SUPSI, IDSIA-06-07.  

[18] Balaprakash P, Birattari M, St ¨ utzle T, et al. Estimation-
based ant colony optimization algorithms for the probabilistic 

travelling salesman problem. Swarm Intell 2009;3(3):223–
242. 

[19] Bianchi L, Birattari M, Manfrin M, et al. Hybrid 
metaheuristics for the vehicle routing problem with stochastic 
demands. J Math Model Algorithms 2006;5(1):91–110. 

[20] Brailsford SC, Gutjahr WJ, Rauner MS, et al. Combined 
discrete-event simulation and ant colony optimisation 
approach for selecting optimal screening policies for diabetic 
retinopathy. Comput Manag Sci 2006;4(1):59–83.  

[21] Di Caro G, Dorigo M. AntNet: Distributed stigmergetic 
control for communications networks. J Artif Intell Res 
1998;9:317–365. 

[22] Di Caro G, Ducatelle F, Gambardella LM. AntHocNet: an 
adaptive nature-inspired algorithm for routing in mobile ad 
hoc networks. Eur Trans Telecommun 2005;16(5): 443–455. 

[23] GuntschM,MiddendorfM. Pheromone modification strategies 
for ant algorithms applied to dynamic TSP. In: Boers EJW, et 
al., editors. Volume 2037, Applications of Evolutionary 
Computing, Proceedings of EvoWorkshops 2001, Lecture 
Notes in Computer Science. Heidelberg: Springer; 2001. pp. 
213–222. 

[24] Guntsch M, Middendorf M. A population based approach for 
ACO. In: Cagnoni S, et al., editors. Volume 2279, 
Applications of Evolutionary Computing, Proceedings of 
EvoWorkshops 2002, Lecture Notes in Computer Science. 
Heidelberg: Springer; 2002. pp. 71–80. 

[25] Eyckelhof CJ, Snoek M. Ant systems for a dynamic TSP: 
Ants caught in a traffic jam. In: Dorigo M, et al., editors. 
Volume 2463, Ant Algorithms: 3rd International Workshop, 
ANTS 2002, Lecture Notes in Computer Science. Heidelberg: 
Springer; 2002. pp. 88–99.  

[26] [26] Sammoud O, Solnon C, Gh´edira K. A new ACO 
approach for solving dynamic problems. In: 9th International 
Conference on Artificial Evolution (EA’09), Lecture Notes in 
Computer Science. Heidelberg: Springer, In press.  

[27] Montemanni R, Gambardella LM, Rizzoli AE, et al. Ant 
colony system for a dynamic vehicle routing problem. J 
Comb Optim 2005;10:327–343. 

[28] Donati AV, Montemanni R, Casagrande N, et al. Time 
dependent vehicle routing problem with a multi ant colony 
system. Eur J Oper Res 2008;185(3):1174–1191.  

[29] Doerner KF, Hartl RF, ReimannM. Are CompetAntsmore 
competent for problem solving? The case of a multiple 
objective transportation problem. Cent Eur J Oper Res Econ 
2003;11(2):115–141.  

[30] Angus D, Woodward C. Multiple   ant colony optimization. 
Swarm Intell 2009; 3(1):69–85. 

[31] Gutjahr WJ. S-ACO: an ant-based approach to combinatorial 
optimization under uncertainty. In: Dorigo M, et al., editors. 
Volume 

[32] 3172, Ant Colony Optimization and Swarm Intelligence: 4th 
InternationalWorkshop, ANTS 2004, Lecture Notes in 
Computer Science. Heidelberg: Springer; 2004. pp. 238–249. 

[33] Schoonderwoerd R, Holland O, Bruten J, et al. Ant-based 
load balancing in telecommunications networks. Adapt Behav 
1996; 5(2):169–207. 

[34] Di Caro G, Dorigo M. Mobile agents for adaptive routing. In: 
El-Rewini H, editor. Proceedings of the 31st International 
Conference on System Sciences (HICSS-31). Los Alamitos: 
IEEE Computer Society Press; 1998. pp. 74–83. 

[35] Di Caro G. Ant Colony Optimization and its application to 
adaptive routing in telecommunication networks [PhD 
Thesis]. Brussels, Belgium: IRIDIA, Universit´e Libre de 



H.Vignesh Ramamoorthy et al, International Journal of Advanced Research in Computer Science, 4 (4), March–April, 2013,224-229 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                       229 

Bruxelles; 2004. 124. Sim KM, Sun WH. Ant colony 
optimization for routing and load-balancing: survey and new 
directions. IEEE Trans Syst Man Cybern Part A: Syst Hum 
2003;33(5):560–572.  

[36] Zhang Y, Kuhn LD, Fromherz MPJ. Improvements on ant 
routing for sensor networks. In: Dorigo M, et al., editors. 
Volume 3172, Ant Colony Optimization and Swarm 
Intelligence: 4th InternationalWorkshop, ANTS 2004, 
Lecture Notes in Computer Science. Heidelberg: Springer; 
2004. pp. 154–165. 

[37] Ducatelle F, Di Caro G, Gambardella LM. Using ant agents 
to combine reactive and proactive strategies for routing in 
mobile ad hoc networks. Int J Comput Intell Appl 
2005;5(2):169–184. 

[38] Farooq M, Di Caro G. Routing protocols for next-generation 
intelligent networks inspired by collective behaviors of insect 
societies. In: Blum C,Merkle D, editors. Swarm intelligence: 
introduction and applications, Natural Computing Series. 
Berlin: Springer; 2008. pp. 101–160. 

[39] Ducatelle F, Di Caro G, Gambardella LM. Principles and 
applications of swarm intelligence for adaptive routing in 
telecommunications networks. Swarm Intell 2010. In press. 

[40] Socha K. ACO for continuous and mixedvariable 
optimization. In: Dorigo M, et al., editors. Volume 3172, Ant 
Colony Optimization and Swarm Intelligence: 4th 
International Workshop, ANTS 2004, Lecture Notes in 
Computer Science. Heidelberg: Springer; 2004. pp. 25–36. 

[41] Tsutsui S. Ant colony optimisation for continuous domains 
with aggregation pheromones metaphor. In: Proceedings of 
the The 5th International Conference on Recent Advances in 
Soft Computing (RASC-04).Nottingham; 2004. pp. 207–212. 

[42] Tsutsui S. An enhanced aggregation pheromone system for 
real-parameter optimization in the ACO metaphor. In: Dorigo 
M, et al., editors. Volume 4150, Ant Colony Optimization 
and Swarm Intelligence: 5th International Workshop, ANTS 

2006, Lecture Notes in Computer Science. Heidelberg: 
Springer; 2006. pp. 60–71. 

[43] Socha K, Dorigo M. Ant colony optimization for mixed-
variable optimization problems. Belgium: IRIDIA, 
Universit´e Libre de Bruxelles; 2007. TR/IRIDIA/2007-019. 

[44] Maier HR, Simpson AR, Zecchin AC, et al. Ant colony 
optimization for design of water distribution systems. J Water 
Resour Plann Manag ASCE 2003;129(3):200–209.  

[45] L´opez-Ib´a˜ nez M, Prasad TD, Paechter B. Ant colony 
optimisation for the optimal control of pumps in water 
distribution networks. J Water Resour Plann Manag ASCE 
2008;134(4):337–346.  

[46] Bautista J, Pereira J. Ant algorithms for assembly line 
balancing. In: Dorigo M, Di Caro G, Sampels M, editors. 
Volume 2463, Ant Algorithms: 3rd International Workshop, 
ANTS 2002, Lecture Notes in Computer Science. Heidelberg: 
Springer; 2002. pp. 65–75.  

[47] Blum C, Bautista J, Pereira J. Beam- ACO applied to 
assembly line balancing. In: Dorigo M, et al., editors. Volume 
4150, Ant colony optimization and swarm intelligence, 
Lecture Notes in Computer Science. Heidelberg: Springer; 
2006. pp. 96–107. 

[48] Thomas Stutzle, Manuel Lopez-Iban Ez, Marco Dorigo, 
Iridia. A Concise Overview of Applications of Ant Colony 
Optimization, Wiley Encyclopedia of Operations Research 
and Management Science, edited by James J. Cochran 
Copyright © 2010 John Wiley & Sons, Inc.   

[49] Zar Chi Su Su Hlaing, May Aye Khine. An Ant Colony 
Optimization Algorithm for Solving Traveling Salesman 
Problem, International Conference on Information 
Communication and Management IPCSIT, Vol.16 (2011), 
IACSIT Press, Singapore 

 
 

 
 
 
 

   


