
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 286 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Software Change Validation before Change Implementation
Aprna Tripathi

Department of Computer Science and Engineering
MNNIT Allahabad Allahabad, India

rcs1051@mnnit.ac.in

Dharmendra Singh Kushwaha
Department of Computer Science and Engineering

MNNIT Allahabad Allahabad, India
dsk@mnnit.ac.in

Arun Kumar Misra

Department of Computer Science and Engineering
MNNIT Allahabad Allahabad, India

akm@mnnit.ac.in

Abstract: Software maintenance is the most demanding and most expensive task of the software development. Quality of the regression
testing decides the quality of the maintained software. Several approaches, code-based and model- based are recommended in literature to
minimize the regression test suit. This paper proposes the model based technique to validate the change before implementation. The
approach considers the SRS and UML class diagram for earlier change validation. We update the SRS for including the requested change
and prepare difference_SRS file that contain the differences of old and new SRS. After imposing these changes in UML class diagram,
dependency matrix for both old and new class diagram and a difference dependency matrix from these two dependency matrices is
generated we map the entire changes one by one form difference_SRS file to difference dependency matrix. Using the approach, we have
concluded a case study and observed impressive gains in terms of less requirement of regression testing effort. The result shows that the
approach allows the implementation of change only after validating the requested change after the design phase.

Keywords: Software Change Validation, SRS, Regression Testing, Class Diagram, UML and Dependency Matrix.

I. INTRODAUCTION

Software maintenance is basically a post development
activity but most of the times it consumes 40-70% of the
overall development costs [4]. To achieve confidence,
currently organizations re-execute the entire system test
suite on the entire software. Re-executing complete
system test suite is an expensive and time consuming
activity. To reduce such costs, execution of smaller
regression test suite to validate the changed software is
suggested. It is a good practice to validate changes
required by the user before implementation. As defined by
IEEE standards [14], Validation is the process of
evaluating software during or at the end of the
development process to determine whether it satisfies
specified requirements [IEEE-STD-610]. In this work we
are proposing an approach to validate the change after
design phase. As the changes are requested by user or
client, the Change Request Form (CRF) is filled by the
user. After the approval of the change the Software
Requirement Specification (SRS) is updated for
incorporating all the requested change. In general
practices, the regression testing comes in picture after
implementing the change to achieve adequate confidence
in changed software.
This paper proposes a method for validating the change at
design phase. The rest of the paper is organized as
follows. Section II summarises the related work of
regression testing. Section III details the proposed

approach. Section IV and V presents the case study and
results. Section VI, the last section of the paper, outlines
conclusions and future work.

II. STATE -OF - THE- ART

Several techniques, both code-based and model-based that
recommend smaller regression test suites have been
proposed in the literature. Li [1] describes the major
challenges in coping with requirement changes in the
software verification and validation processes and
indicates how those challenges are being addressed at
Research In Motion (RIM.) Fluri [2] presents an approach
that uses the structure compare services shipped with the
Eclipse IDE to obtain the corresponding fine grained
changes between two subsequent versions of any Java
class. This information supports filtering those change
couplings which result from structural changes. So we can
distill the causes for change couplings along releases and
filter out those that are structurally relevant. Briand [3]
focuses on automating regression test selection based on
architecture and design information represented with the
Unified Modeling Language (UML) and traceability
information linking the design to test cases. The approach
considers few assumptions like UML diagrams are
consistent with each other. Gorthi [5] presents a novel
approach for regression test suite selection that utilizes
Unified Modeling Language (UML) based Use Case
Activity Diagrams (UCAD). In literature, a number of
regression test suit selection techniques are recommended

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 287 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

to minimize the time and cost involved in regression
testing, to validate modified software. Typically
regression test selection techniques are either code-based
or model-based [6, 7, 8, 9, 10]. Code-based techniques
[11, 12, 13] use the information obtained from two
different versions of the code to analyze the change
impact and select the tests. Farooq [16] proposes an
approach for regression test in this paper based on
selective state machine. For this purpose class diagram

and state diagrams are used and classes are defined the
changes as class driven and the state driven.

III. PRAPOSED APPROACH

The aim is to validate the changes in the design phase
itself. For this, we are using the SRS and class diagrams
of the

Figure: 1 Framework of Proposed Approach

Old system as well as the new system. For this we
followed the following steps:
a. Finding difference between the two SRS..
b. Generation of XML representation of class diagrams
c. Finding dependencies between classes for old and

new design
d. Finding changes in old and new dependency matrix
e. Mapping the changes of SRS and class diagram

The figure 1 represents our proposed approach. Here we
have considered the SRS of the existing system as the
input. Using the CRF given by the user, we update the
existing SRS and make the new SRS. Using an open
source JAVA code we compare old and new SRS. The
differences between old and new SRS are stored in a
document file: diff.doc. After this, we draw the class
diagram of the existing system and hence the
Dependency Matrix (DM1) by generating the XML

representation of the class diagram. Similarly we draw
the class diagram of the new changed system and its
corresponding DM2. After this, we find the difference
between these DM1 and DM2 that represents the
difference in class diagram in terms of class name and
relationship. We use a mapping algorithm to map that
changes made in SRS and class diagram. Software
changes are valid if for all the changes in the SRS have
corresponding change in the class diagram. If the
changes have been validated successfully, we proceed
towards implementation of accepted changes otherwise
we go back to the design phase for modifying the new
class diagram. This process is repeated until all the
changes are validated successfully.

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 288 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

A. Finding difference between the two SRS:

We have the SRS of the existing system. After obtaining
the new user requirements we make the new SRS. Now
we use an open source JAVA code to find the
differences between the old and the new SRS.

B. Generation of XML Representation of Class
Diagram:

Before moving towards applying our approach we
generate class diagram using a plug-in in Eclipse called
ObjectAid [15] that generates class diagrams. Internally,
this class diagram is represented in the form of an XML
file, which contains the information about classes, their
methods, attributes and dependencies, associations and
generalizations between them. Each class has an id, and
each dependency has a source and a target, both of which
is an id of the class which acts as the source or the target
of the dependency. Association (a relationship between
classes of objects that allows one object instance to cause
another to perform an action on its behalf) and
generalization (shared characteristics, especially methods
and attributes, usually as an outcome of inheritance
between classes) are also a form of dependency between
classes, and has been taken into consideration. In the
following section, we illustrate how the dependencies
between the various classes in a given software have been
extracted using its class diagram.

C. Finding Dependencies between Classes for old and
new system :

We can generate the class diagram for both old and new
software. We now have the XML representation of both
the class diagram for the software as well. We use the
XML DOM (Document Object Model) parser API in
JAVA, which is included in org.w3c.dom package for
JAVA. The parsing algorithm XML_PARSER is
developed for the XML file to find the classes defined in
the software and the dependency among those classes as
shown in Figure 2.
Firstly, all nodes that have the tag-name as Class are
extracted, along with the id given to that class. These
classes are stored in an array, with index corresponding to
their respective ids.
After all the classes have been extracted, all nodes that
have tag-names as dependency, association or
generalization have been extracted. These nodes contain,
within their source and target attributes the ids of classes.
Using these values, a two dimensional dependency matrix
has been created, which is a matrix of 0’s and 1’s, where
row represents the source class, the column represents the
target class, and the value 1 of a particular cell shows that
there exists a dependency from the ith row to the jth
column, and 0 shows the independency between two
classes. So, by parsing the XML file, we now have the list
of all classes in the software as well as the dependency
matrix for those classes. In the following section, we find
out the differences between old and new dependency
matrix.
Algorithm 1: XML_PARSER

Input: XML file (X), the representation of
class diagram
Output: M the list stores the class id corresponding to the
class name.
Declare: Dependency Matrix (DM) to preserve the
dependency among all classes
Array (A) with indices as class id and value as class
name.
a. Initialize a new instance of Document Builder

Factory.
b. Extract the root element of document X

(getDocumentElement).
c. Let NodeList (NL) is an initial empty NodeList

where NodeList is a data structure defined in
org.w3c.dom package.

d. Let initially DM is a matrix having all elements as 0.
e. NL = Get ElementsbyTagName (“class”)
f. For i = 0 to NL.length

a) Id = NL[i].getAttribute(“id”)
b) ClassName = NL[i].getAttribute(“name”)
c) A [Id] = ClassName
d) M [ClassName] = Id

g. temp[] ={ " dependency ", " generalization " "
association "}

h. For (int k= 0 to 2)
a) NL = Get ElementsbyTagName (

temp[k])
b) For i =0 to NL.length

i. Source =
NL[i].getAttribute(“source”)

ii. Target =
NL[i].getAttribute(“target”)

iii. DM[source][target] = 1

i. Return M, A, DM

Figure: 2 Algorithm XML-Parser

D. Finding Differences between old and new
dependency matrix :

Now we have dependency matrix based on both initial
and the final requirements. We find the difference
between them which gives us the classes which have
been added or deleted and also the relationships that
have been added or deleted. In class dependency we
have string array “classes”, which stores all the classes
that have been used in the source code. Now when we
get a value 1 in the difference matrix we call the relevant
function in class “dependency” and pass the row and
column indices corresponding to that value 1 as
arguments. This function then prints both the classes
concerned with that row and column indices. Thus these
classes represent the classes between which a new
relationship has been added. In the next section we will
map the difference in the two SRS obtained in step A
with the difference in their class diagram for validating
the change requested by the user.
.

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 289 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

E. Mapping the changes of SRS and class diagram :

To verify that the changes in the SRS have been
successfully implemented in the design phase, we parse
the differnce_SRS file to get the new nouns and verbs and
store it in a SRS_Difference list. And the name of newly
added class with their function and variables name are
fetched and stored in other list named as Class_Difference.

Then we will compare the SRS_Difference and
Class_Difference tables, only after getting all the words of
SRS_Difference list in Class_Difference list, we will
conclude that all the requested change that are
incorporated in the new SRS are also designed in the class
diagram, and now we can move towards implementation
for including the requested change in the existing system.

Figure: 3 Class Diagram Before Change

Figure: 4 Class Diagram Matrix After Change

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 290 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

Figure: 5 Differences in SRS Before and After Change

IV. CASE STUDY

We demonstrate our work using a small self-made mini-
application Shipment Retail Management System
(SRMS 1.0) on JAVA. We assumed that we are only
shipping the material if it is packed in a box. For
computing shipping cost, we input the dimensions and
weight of the box. In the process to incorporate the
changes demanded by user and clients, we incorporated

these changes in the existing SRMS 1.0 and developed
SRMS 1.1. The requested changes are: an additional cost
is charged, if the material inside the box is Jewellery,
Clothes or Grocery. Also there is an additional cost if
the consignment delivery place is outside Uttar Pradesh
or Uttaranchal. Also there is an additional cost if
delivery type is “urgent” or “within a day”. The final

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 291 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

cost is the sum of basic cost and additional cost. The
figure 3 and 4 are showing the class diagrams of the
SRMS 1.0 and SRMS 1.1. The difference of old and new
SRS are captured by a tool WinMerge and stored in a
text file named as Difference_SRS. Content of the
Difference_SRS is shown in figure 5. For SRMS 1.0, we

have six classes named as, Box, Feature, ColorBox,
Demo, BoxWeight, and Shipment. After change in class
diagram for incorporating the requested change, we have
new class diagram in SRMS 1.1. In SRMS 1.1 we have
eight classes, i.e. classes that are in SRMS 1.0 and two
other new classes- Calculatecost and matrixoperation.

V. RESULTS

The dependency matrix represents the relation among
classes. Figure 6 and 7 are showing the dependency
matrix of SRMS 1.0 and SRMS 1.1 and the figure 8 is
showing the difference between the two dependency
matrixes. In fig. 6, 7 and 8 we used the symbols to
represent the class name i.e. 'B' Box, 'F' Feature, 'C'
ColorBox, 'D' Demo, 'W' BoxWeight, 'Co' Calculatecost
and 'M' matrixoperation and 'S' Shipment

0 1 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

B W D F C S

B

W

D

F

C

S

Figure: 6 Class Dependency Matrix Before Change

0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B W D F C S Co M

B

W

D

F

C

S

Co

M

Figure: 7 Class Dependency Matrix After Change

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B W D F C S Co M

B

W

D

F

C

S

Co

M

Figure: 8 Differences in Dependency Matrices Before and After Change

From the figure 8, we get the changes in terms of class
names and class relationship. The newly added classes

are stored in the table Class_difference. In this case two
new classes, Co and M are added in the existing design.
From figure 3 and 4 we can get that new added classes
are: Matrixoperation and CalculateCost. Also a
relationship between CalculateCost and Shipment is
added in the new class diagram. In the CalculateCost class
the addition cost function is added and this requirement is
also available in Difference_SRS document. This
Difference _SRS file is parsed and the nouns and verbs
are filtered. These words are stored in a list named
SRS_Difference. After comparing the list
SRS_Difference and Class_Difference, we found that the
words exist in the SRS_Difference list is also in
Class_Difference. Thus finally we are validating that the
user requested change has been implemented successfully
in the design phase. From the difference matrix we can
also visualize the least affected classes after incorporating
the change in the design.

VI. CONCUSION AND FUTURE WORK

The regression testing assures the corrective
implementation of the requested change. To test the
system regressively in minimum effort the test suit
selection and prioritization techniques are used. This
paper proposes an approach for validating change before
implementation. The usage of this approach significantly
reduces the effort required in change implementation as
well as in regression testing. It finds the invalid changes
at design phase, so that effort required for coding the
testing is consumed only for implementing the valid
changes and during testing we only require to verify the
requested changes. This significantly reduces the
number of test cases that need to be run to verify the
new source code. Currently we are using only the class
diagram. in future we shall include more diagrams like
sequence diagram and collaboration diagram to validate
the change. Also currently we have used open source
software to find the differences between the old and new
SRS. In future we aim to develop a self designed code
for the above purpose.

VII. REFERENCES

[1] Shimin Li, Ladan Tahvildari, Weining Liu, Mike
Morrissey, and Gary Cort. 2008. Coping with
Requirements Changes in Software Verification
and Validation. In Proceedings of the 2008 12th
European Conference on Software Maintenance
and Reengineering (CSMR '08). IEEE Computer
Society, Washington, DC, USA, 317-318.

[2] Beat Fluri, Harald C. Gall, and Martin Pinzger.
2005. Fine-Grained Analysis of Change Couplings.
In Proceedings of the Fifth IEEE International

Aprna Tripathi et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 286-292

© 2010, IJARCS All Rights Reserved 292 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,

Workshop on Source Code Analysis and
Manipulation (SCAM '05). IEEE Computer
Society, Washington, DC, USA, 66-74.

[3] L. C. Briand, Y. Labiche, and S. He. 2009.
Automating regression test selection based on
UML designs. Inf. Softw. Technol. 51, 1 (January
2009), 16-30.

[4] Aggrawal K. K. and Singh Y., Software
Engineering, 4th Edition, New Age International.

[5] Ravi Prakash Gorthi, Anjaneyulu Pasala, Kailash
KP Chanduka, and Benny Leong. 2008.
Specification-Based Approach to Select
Regression Test Suite to Validate Changed
Software. In Proceedings of the 2008 15th Asia-
Pacific Software Engineering Conference (APSEC
'08). IEEE Computer Society, Washington, DC,
USA, 153-160.

[6] Lihua Xu and Debra Richardson, “Generating
Regression Tests Using Model Checking”,
http://gracehopper.org/2004/Proceedings/PDF/ni_
Xu.pdf

[7] Zalewski, M. and Schupp, S., “Change Impact
Analysis for Generic Libraries”, 22nd IEEE
International Conference on Software
Maintenance, September 24-27, 2006, pp 35-44.

[8] Zheng, J., Robinson, B., Williams, L., and Smiley,
K., Applying Regression Test Selection for COTS
based Applications”, roceedings of ICSE 2006,
Shanghai, China, ay 20-28, 2006, pp 512-521.

[9] Sujith Kumar Chakrabarti and Y N Srikanth,
“Specification based regression testing using
explicit state space enumeration”, International
conference on software engineering advances,
ctober 29 to November 3, 2006.

[10] Yanping Chen, Robert L. Probert and Hasan Ural,
“Model-Based regression test suite generation
using dependency analysis”, 3rd International
workshop on advances in model-based testing,
London, July 9-12, 2007, pp 54-62.

[11] Anjaneyulu, P., Srinivasa, R., Srinivas, G. and
Sinha, P., “An Approach Based on Modeling
Dynamic Behavior of the System to Assess the
Impact of COTS Upgrades”, 13th Asia-Pacific
Software Engineering Conference, Dec. 6-8, 2006,
pp 19-26.

[12] Anjaneyulu Pasala, Yannick LH, Fady A, Appala
Raju G and Ravi P Gorthi, “Selection of regression
test suite to validate software applications upon
deployment of upgrades”, 19th Australian
Software Engineering conference, 25-28 March
2008, pp 130- 138.

[13] Apiwattanapong, T., Orso, A., and Harrold, M.J.,
“JDiff: A Differencing Technique and Tool for
Object--Oriented Programs”, Journal of Automated
Software Engineering, Vol 14, No. 1, March 2007,
pp 3-36.

[14] Software Engineering Standards Committee of the
IEEE Computer Society, “IEEE Recommended
Practice for Software Requirements
Specifications,” IEEE Inc. NY, USA, 1998.

[15] www.objectaid.com/ accessed on 01.11.2012.

[16] Qurat-ul-ann Farooq, Muhammad Zohaib Z. Iqbal,
Zafar I Malik, and Aamer Nadeem. 2007. An
approach for selective state machine based
regression testing. In Proceedings of the 3rd
international workshop on Advances in model-
based testing (A-MOST '07). ACM, New York,
NY, USA, 44-52.

