
Volume 4, No. 1, January 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 34
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

Query Processing in Graphical Data
Santosh Kumar Sahu*

Department of Information Technology
Rajiv Gandhi College of
Engineering & Research

sksahu.ngp.india@gmail.com

Mujeeb Rahaman
Department of Computer Engineering

St. Vincent Pallotto College of Engineering & Tehnology
Nagpur, India

Mujeebrahman1984@gmail.com

Abstract: Graph data are becoming increasingly more ubiquitous in today’s networked world. Examples include social networks such as
MySpace and Facebook as well as cell phone networks and blogs. The network routing across the Internet is another example of graph data, as is
the hyperlinked structure of the World Wide Web (WWW). Bioinformatics, especially systems biology, deals with understanding interactions
networks between various types of biomolecules, such as protein-protein interactions, metabolic networks, gene networks, and so on. Another
example comes from semi-structured data, say in the form of XML documents. Given a graph query, it is desirable to retrieve graphs quickly
from a large database via graph-based indices. We are using of frequent substructure as the basic indexing feature. Frequent substructures are
ideal candidates since they explore the intrinsic characteristics of the data and are relatively stable to database updates. To reduce the size of
index structure, we used techniques, size-increasing support discriminative fragments.

Keywords: Graph indexing, frequent fragments, discriminative fragments, gSpan, index construction

I. INTRODUCTION

The goal of graph mining is to extract interesting
subgraphs from a single large graph (e.g., the WWW), or
from a database of many graphs. In different applications we
may be interested in different kinds of subgraph patterns,
such as subtrees, complete graphs or cliques, bipartite
cliques, dense subgraphs, and so on. These may represent,
for example, communities in a social network, hub and
authority pages on the WWW, a protein modules involved in
similar biochemical functions, and so on. Often, we may
want to mine all the frequent subgraphs that appear in a
database, without specifying a particular type of subgraph of
interest.A graph is a pair G = (V,E) where V is a set of
vertices, and E is a set of edges, where an edge is an
unordered pair of distinct vertices. A graph G’= (V’,E’) is
said to be a subgraph of G if V’ Є V and E’ Є E. In many
applications of data mining, we are specifically interested in
only connected subgraphs, i.e., when V’ Є V, E’ Є E, and
for any x, y Є V’, there exists a path from x to y in G’.

A. Graph isomorphism:
Find a mapping f of the vertices of G1 to the vertices of

G2 such that G1 and G2 are identical; i.e. (x,y) is an edge of
G1 iff (f(x),f(y)) is an edge of G2. Then f is an isomorphism,
and G1 and G2 are called isomorphic[3,4].
 No polynomial-time algorithm is known for graph
isomorphism.
Neither is it known to be NP-complete.

B. Subgraph isomorphism:
Subgraph isomorphism asks if there is a subset of edges

and vertices of G1 that is isomorphic to a smaller graph G2.
Subgraph isomorphism is NP-complete. The formatter will
need to create these components, incorporating the
applicable criteria that follow.

II. SUBGRAPH MINING

To mine all the frequent subgraphs, we have to search
over the space of all possible graph patterns, which is
enormously large. For example, if we consider graphs with
m vertices, then there are

Possible edges. The number of possible subgraphs with
m nodes is then 2O(m2), since we may either decide to
include to exclude each of the O(m2) edges. Many of these
will not be connected, but we can still use this worst case
bound. When we add labels to the vertices and edges, the
number of labeled graphs will be even more. Assume that
|ƩV | = | Ʃ E| = I, then there are Im possible ways to label the
vertices and there are Im2 ways to label the edges. Thus the
number of possible labeled subgraphs with m vertices is

This is the worst case pessimistic bound, since many of
these subgraphs will be isomorphic to each other, so the
number of distinct subgraphs will be much less[3].

A. Select Subgraph Mining Algorithms:
For Subgraph Mining, there are two types of approach:

Apriori-based approach
o FSG

Pattern growth approach
o SUBDUE

o gSpan
a. Apriori-based approach: The Apriori algorithm uses

prior knowledge of frequent itemsets to generate the
candidates for larger frequent itemsets[3]. It relies on
relationships between itemsets and subsets. If an
itemset is frequent, then all of its subsets must also be
frequent. But generating candidates and checking their
support at each level of iteration can become costly.
The Apriori Algorithms an influential algorithm for
mining frequent item sets for Boolean association

Santosh Kumar Sahu et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013 ,34-37

© 2010, IJARCS All Rights Reserved 35
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

rules. Most algorithms follow the general principle of
the Apriori algorithm for association rule mining.

(a). FSG: Kuramochi and Karypis [2001] propose the FSG
algorithm which also has the same flavor: starting with
frequent subgraphs of 1 and 2 nodes, it successively
generates larger subgraphs which still occur frequently
in the graph. The algorithm expects a graph with
colored edges and nodes; our graphs are a special case
where all nodes and edges have only one color.
However, it also needs to solve the graph and subgraph
isomorphism problems repeatedly, and this is very
slow and inefficient for graphs with only one color.

Challenges of Apriori-based approach: The Apriori-like
algorithms meet two challenges:

a) Candidate Generation: The generation of size &
subgraph candidates from size 6 frequent subgraphs is
more complicated and costly than that of itemsets.

b) Pruning false positives: Subgraph isomorphism test is
an NP complete problem, thus pruning false positives
is costly.

b. Pattern growth approach: Pattern growth introduces a
different approach here. Instead of generating the
candidates, it compresses the database into a compact
tree form, known as the FP-tree, and extracts the
frequent patterns by traversing the tree.

a) SUBDUE is a graph-based knowledge discovery
system that finds structural, relational patterns in data
representing entities and relationships. SUBDUE
represents data using a labeled, directed graph in which
entities are represented by labeled vertices or
subgraphs, and relationships are represented by labeled
edges between the entities. SUBDUE uses the
minimum description length (MDL) principle to
identify patterns that minimize the number of bits
needed to describe the input graph after being
compressed by the pattern. SUBDUE can perform
several learning tasks, including unsupervised learning,
supervised learning, clustering and graph grammar
learning. SUBDUE has been successfully applied in a
number of areas, including bioinformatics, web
structure mining, counter-terrorism, social network
analysis, aviation and geology.

i. Disadvantage of SUBDUE:
Compression is lossy from the point of view of minimal

description length (MDL), this is not very nice length.
Not well in line with existing, well--studied, graph

grammars studied, grammars.
a) gSpan: Unlike FSG, gSpan discovers

frequent substructures without candidate generation
and false positives pruning. It builds a lexicographic
order among graphs, and maps each graph to a unique
minimum DFS code as its canonical label. Based on
this lexicographic order, gSpan adopts the depth first
search strategy to mine frequent connected
subgraphs[1]. gSpan, which targets to reduce or avoid
the challenges of Apriori based approaches and
overcome to disadvantage of SUBDUE. If the entire
graph dataset can not in main memory, gSpan can be
applied directly; otherwise, one can first perform graph
based data projection as in and then apply gSpan. To
the best of our knowledge, gSpan is the first algorithm
that explores depth first search (DFS) in frequent
subgraph mining. Two techniques, DFS lexicographic

order and minimum DFS code, are used here, which
form a novel canonical labeling system to support DFS
search. gSpan discovers all the frequent subgraphs
without candidate generation and false positives
pruning. It combines the growing and checking of
frequent subgraphs into one procedure, thus
accelerates the mining process.

b) DFS Subscripting: When performing a depth first
search [3] in a graph, we construct a DFS tree. One
graph can have several different DFS trees. For
example, graphs in Fig.1(b), Fig.1(c) and Fig.1(d) are
isomorphic to that in Fig.1(a). The thickened edges in
Fig.1(b)-(d) represent three different DFS trees for the
graph in Fig.1(a). The depth first discovery of the
vertices forms a linear order. We use subscripts to
label this order according to their discovery time [3]. i
< j means vi is discovered before vj . We call v0 the
root and v1the rightmost vertex. The straight path from
v0 to vn is named the rightmost path. In Fig.1(b)-(d),
three different subscripting are generated for the graph
in Fig.1(a). The right most path is (v0, v1, v4) & in
Fig.1(b), (v0, v4) in Fig.1(c), and (v0, v1, v2, v4) in
Fig.1(d). We denote such subscripted G as GT.

Figure 1. Depth First Search Tree.

Table I. 1 DFS code for Figure.1(b) – (d)

Given a graph G, we perform a depth first search (DFS)

over its vertices, and create a DFS spanning tree, i.e., one
that covers or spans all the vertices, which was obtained by
starting at v1 and then choosing the vertex with the smallest
index at each step. Edges that are included in the DFS tree
are called forward edges, and all other edges are called
backward edges. Backward edges create cycles in the graph.

c) DFS Code Lexicographic:
We write

Santosh Kumar Sahu et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013 ,34-37

© 2010, IJARCS All Rights Reserved 36
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

If either:
Here <e is an ordering on the edges and <l is an ordering

on the vertex and edge labels. The label order <l is the
standard lexicographic order on the vertex and edge labels.
For example the label tuple <a,a,r> <l <a,b,q> since if we
compare the two tuples in an element-wise manner, we find
that L(vj) = a < b = L(vy). The edge order <e is more
involved. Let ei j = (vi,vj) and exy = (vx,vy). We write eij
<e exy if the following conditions are met:
i) If eij and exy are both forward edges, then a) j < y or,

b) j
= y and i > x.
ii) If eij and exy are both backward edges, then a) i < x or

b) i = x and j < y.
iii) If eij is a forward and exy is a backward edge, then i <
y.

iv) If eij is a backward and exy is a forward edge, then j
*

x.
Given the DFS codes for any two graphs, we can

compare them tuple by tuple to check which is smaller.

III. FREQUENT FRAGMENT

Given a graph database D, |Dg| is the number of graphs
in D where g is a subgraph. |Dg| is called (absolute) support,
denoted by support(g). A graph g is frequent if its support is
no less than a minimum support threshold, minSup. As one
can see, frequent graph is a relative concept. Whether a
graph is frequent depends on the setting of minSup[2]. We
use the term “fragment" to refer to a small subgraph (i.e.,
substructure) existing in graph databases and query graphs.
Figure 3 shows two frequent fragments in the sample
database with minSup = 2.

Figure 2. A Sample Database

any graph with q embedded must contain q's sub-graphs,
Df is a candidate answer set of query q. If minSup is low, it
is not expensive to verify the small number of graphs in Df
in order to find the query answer set. Therefore, it is feasible
to index frequent fragments for graph query processing[4].

IV. DISCRIMINATIVE FRAGMENT

Do we need to index every frequent fragment? Let's have
some analysis. If two similar frequent fragments, f1 and f2,
are contained by the same set of graphs in the database, i.e.,
Df1 = Df2 , it is probably wise to include only one of them
in the feature set[2]. Generally speaking, among similar
fragments with the same support, it is often sufficient to
index only the smallest common fragment since more query
graphs may contain the smallest fragment. That is to say, if
f’, a supergraph of f, has the same support as f, it will not be
able to provide more information than f if both are selected
as indexing features. Thus f’ should be removed from the
feature set. In this case, we say f’ is not more discriminative
than f.

All the graphs in the sample database (Figure 2) contain
carbon-chains: c, c-c, c-c-c, and c-c-c-c. Fragments c-c, c-c-
c, and c-c-c-c do not provide more indexing power than
fragment c. Thus, they are useless for indexing.

Let us examine the query example in Fig.4. As shown
below, carbon chains, c - c, c - c - c, and c - c - c - c, are
redundant and should not be used as indexing features in
this dataset. The carbon ring (Fig.5(c)) is a discriminative
fragment since only graph (c) in Figure 2 contains it while
graphs (b) and (c) in Figure 2 have all of its subgraphs.
Fragments (a) and (b) in Fig.5 are discriminative too.

Figure 3. Frequent fragment

Figure 4. A Sample Query

Figure 5. Discriminative Fragment

Frequent fragments expose the intrinsic characteristic of
a graph database. Suppose all the frequent fragments with
minimum support minSup are indexed. Given a query graph
q, if q is frequent, the graphs containing q can be retrieved
directly since q is indexed. Otherwise, q probably has a
frequent subgraph f whose support may be close to minSup.
Since

V. INDEX CONSTRUCTION

Once discriminative fragments are selected, we use
efficient data structures to store and retrieve them. Each
fragment is associated with an id list: the ids of graphs
containing this fragment. We present the details of index
construction.

Steps for Index construction:
a. Find the DFS code of each discriminative fragment.
b. Find the each DFS fragments id list associated with

them.
c. Convert each DFS fragment into its equal graphic

hash value by using Graphic Hash Code function.
(We can map any graph to an integer by hashing its
canonical label).

Graphic Hash Code can help quickly locating fragments
in the index structure. 9. Cq = Si

Algorithm 1: Index Construction
10. return Cq

a. Input: Graph Database D (Discriminative fragment
with DFS code).

b. Output: Index Structure with hash_value and its

Santosh Kumar Sahu et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013 ,34-37

© 2010, IJARCS All Rights Reserved 37
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

associated id list.
c. For each Discriminative fragment do
d. Convert hash_ value by using Graphic Hash Code
e. Pi = hash_value with it associated id list

/* Pi is the Data Structure which is store the hash_value and
its associated id list */

f. end do

VI. HASH CODE GENERATION

Given a sequence hash function h and a graph g,
h(dfs(g)) is called graphic hash code. We treat the graphic
hash code as the hash value of a graph. If two graphs g and
g0 are isomorphic, then h(dfs(g)) = h(dfs(g0)).

Algorithm 2: Graphic Hash Code
a. Input: Graph Database D (Discriminative fragment

with DFS code).
b. Output: hash_value (unsigned long integer) of each

DFS code.
c. for each Discriminative fragment do
d. hash_value = convert unsigned long to each DFS

fragment.
e. Store hash_value to appropriate Data Structure
f. end do

VII. SEARCHING

Given a query q, we enumerate all its fragments and
locate them in the index. Then it intersects the id lists
associated with these fragments.

Algorithm 3: Searching
a. Input: Graph database D with id list, Query q.
b. Output: Candidate answer set Cq.
c. let Cq = NULL
d. for each fragment x q do
e. if x Di
f. Si = id list of Di /* Si is the Data Structure which is

store the id list */
g. end if
h. end do.

VIII. EXPERIMENTAL RESULT

We implement our project work for 60 different types of
graph data in Intel core2 Duo processor with 2GB RAM.
The entire 60 graph is in above described input format. Each
graph stored in different text file, and Entire 60 graphs
stored in an another text file.

a. Discriminative fragment reduce the index search
space. see table:

b. Time Comparison between Hash Code and String

Matching.
Table: 2

Support No. of
frequent
fragment

No. Of
Discrinative
fragment

String
Matching
(in
seconds)

Hash code
(in
seconds)

2 8583 167 340 315

3 4374 124 230 220

4 2472 100 150 145

5 1312 80 100 96

6 968 66 95 92

c. Query Perfection: If we work with minimum support
then our query result is more accurate.

Table: 3

Search
Graph

Found
with
support 2

Found
with
support 3

Found
with
support 4

Found with
support 5

1 1 1 1 1
2 2 2 2+3+4 2+3+4
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5+10+14+24+52
6 6 6 6 6
7 7 7 7 7+57
8 8 8 8 8
9 9 9 9 9

10 10 10 10 10

IX. CONCLUSION

Graph indexing plays a critical role at effiient query
processing in graph databases which have gained increasing
popularity in bioinformatics, Web analysis, and other
applications involving complex structures. Previous graph
indexing approaches take paths as indexing features and
suffer from overly large index size and substantial query
processing overhead.

In this paper, we have explored a rather different
approach to graph indexing: indexing based on frequent
subgraph structures and discriminative subgraph structures.
Our performance study shows that our graph indexing
method performs better and consumes less space.

X. REFERENCES

[1] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In Proc. 2002 Int. Conf. on Data Mining (ICDM'02),
pages 721-724, Maebashi, Japan,Dec. 2002.

[2] X. Yan P. S. Yu and J. Han. Graph Indexing: A frequent
structure based approach. In Proc. Of SIGMOD, 2004.

[3] Jiawei Han and Micheline Kamber 2008, Data Mining
Concept and Technique. Morgan Kaufmann Publishers.

[4] D.V. Janardhan Rao 2007, A study of Graph mining
Algorithms, ppt, Nov 1, 2007.

