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Abstract: Graph data are becoming increasingly more ubiquitous in today’s networked world. Examples include social networks such as 
MySpace and Facebook as well as cell phone networks and blogs. The network routing across the Internet is another example of graph data, as is 
the hyperlinked structure of the World Wide Web (WWW). Bioinformatics, especially systems biology, deals with understanding interactions 
networks between various types of biomolecules, such as protein-protein interactions, metabolic networks, gene networks, and so on. Another 
example comes from semi-structured data, say in the form of XML documents. Given a graph query, it is desirable to retrieve graphs quickly 
from a large database via graph-based indices. We are using of frequent substructure as the basic indexing feature. Frequent substructures are 
ideal candidates since they explore the intrinsic characteristics of the data and are relatively stable to database updates. To reduce the size of 
index structure, we used techniques, size-increasing support discriminative fragments. 
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I. INTRODUCTION  

The goal of graph mining is to extract interesting 
subgraphs from a single large graph (e.g., the WWW), or 
from a database of many graphs. In different applications we 
may be interested in different kinds of subgraph patterns, 
such as subtrees, complete graphs or cliques, bipartite 
cliques, dense subgraphs, and so on. These may represent, 
for example, communities in a social network, hub and 
authority pages on the WWW, a protein modules involved in 
similar biochemical functions, and so on. Often, we may 
want to mine all the frequent subgraphs that appear in a 
database, without specifying a particular type of subgraph of 
interest.A graph is a pair G = (V,E) where V is a set of 
vertices, and E is a set of edges, where an edge is an 
unordered pair of distinct vertices. A graph G’= (V’,E’) is 
said to be a subgraph of G if V’ Є V and E’ Є E. In many 
applications of data mining, we are specifically interested in 
only connected  subgraphs, i.e., when V’ Є V, E’ Є E, and 
for any x, y Є V’, there exists a path from x to y in G’. 

A. Graph isomorphism: 
Find a mapping f of the vertices of G1 to the vertices of 

G2 such that G1 and G2 are identical; i.e. (x,y) is an edge of 
G1 iff (f(x),f(y)) is an edge of G2. Then f is an isomorphism, 
and G1 and G2 are called isomorphic[3,4]. 
 No polynomial-time algorithm is known for graph 
isomorphism. 
Neither is it known to be NP-complete. 

B. Subgraph isomorphism: 
Subgraph isomorphism asks if there is a subset of edges 

and vertices of G1 that is isomorphic to a smaller graph G2. 
Subgraph isomorphism is NP-complete. The formatter will 
need to create these components, incorporating the 
applicable criteria that follow. 

 
 

II. SUBGRAPH MINING  

To mine all the frequent subgraphs, we have to search 
over the space of all possible graph patterns, which is 
enormously large. For example, if we consider graphs with 
m vertices, then there are 
 
 

Possible edges. The number of possible subgraphs with 
m nodes is then 2O(m2), since we may either decide to 
include to exclude each of the O(m2) edges. Many of these 
will not be connected, but we can still use this worst case 
bound. When we add labels to the vertices and edges, the 
number of labeled graphs will be even more. Assume that 
|ƩV | = | Ʃ E| = I, then there are Im possible ways to label the 
vertices and there are Im2 ways to label the edges. Thus the 
number of possible labeled subgraphs with m vertices is 
 
 

This is the worst case pessimistic bound, since many of 
these subgraphs will be isomorphic to each other, so the 
number of distinct subgraphs will be much less[3]. 

A. Select Subgraph Mining Algorithms: 
For Subgraph Mining, there are two types of approach: 

Apriori-based approach 
o FSG 

Pattern growth approach 
o SUBDUE 

o gSpan  
a. Apriori-based approach: The Apriori algorithm uses 

prior knowledge of frequent itemsets to generate the 
candidates for larger frequent itemsets[3]. It relies on 
relationships between itemsets and subsets. If an 
itemset is frequent, then all of its subsets must also be 
frequent. But generating candidates and checking their 
support at each level of iteration can become costly. 
The Apriori Algorithms an influential algorithm for 
mining frequent item sets for Boolean association 
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rules. Most algorithms follow the general principle of 
the Apriori algorithm for association rule mining. 

(a). FSG: Kuramochi and Karypis [2001] propose the FSG 
algorithm which also has the same flavor: starting with 
frequent subgraphs of 1 and 2 nodes, it successively 
generates larger subgraphs which still occur frequently 
in the graph. The algorithm expects a graph with 
colored edges and nodes; our graphs are a special case 
where all nodes and edges have only one color. 
However, it also needs to solve the graph and subgraph 
isomorphism problems repeatedly, and this is very 
slow and inefficient for graphs with only one color. 

Challenges of Apriori-based approach: The Apriori-like 
algorithms meet two challenges: 

a) Candidate Generation: The generation of size & 
subgraph candidates from size 6 frequent subgraphs is 
more complicated and costly than that of itemsets.  

b) Pruning false positives: Subgraph isomorphism test is 
an NP complete problem, thus pruning false positives 
is costly.  

b. Pattern growth approach: Pattern growth introduces a 
different approach here. Instead of generating the 
candidates, it compresses the database into a compact 
tree form, known as the FP-tree, and extracts the 
frequent patterns by traversing the tree.  

a) SUBDUE is a graph-based knowledge discovery 
system that finds structural, relational patterns in data 
representing entities and relationships. SUBDUE 
represents data using a labeled, directed graph in which 
entities are represented by labeled vertices or 
subgraphs, and relationships are represented by labeled 
edges between the entities. SUBDUE uses the 
minimum description length (MDL) principle to 
identify patterns that minimize the number of bits 
needed to describe the input graph after being 
compressed by the pattern. SUBDUE can perform 
several learning tasks, including unsupervised learning, 
supervised learning, clustering and graph grammar 
learning. SUBDUE has been successfully applied in a 
number of areas, including bioinformatics, web 
structure mining, counter-terrorism, social network 
analysis, aviation and geology.  

i. Disadvantage of SUBDUE: 
Compression is lossy from the point of view of minimal 

description length (MDL), this is not very nice length.  
Not well in line with existing, well--studied, graph 

grammars studied, grammars.  
a) gSpan: Unlike FSG, gSpan discovers 

frequent substructures without candidate generation 
and false positives pruning. It builds a lexicographic 
order among graphs, and maps each graph to a unique 
minimum DFS code as its canonical label. Based on 
this lexicographic order, gSpan adopts the depth first 
search strategy to mine frequent connected 
subgraphs[1]. gSpan, which targets to reduce or avoid 
the challenges of Apriori based approaches and 
overcome to disadvantage of SUBDUE. If the entire 
graph dataset can not in main memory, gSpan can be 
applied directly; otherwise, one can first perform graph 
based data projection as in and then apply gSpan. To 
the best of our knowledge, gSpan is the first algorithm 
that explores depth first search (DFS) in frequent 
subgraph mining. Two techniques, DFS lexicographic 

order and minimum DFS code, are used here, which 
form a novel canonical labeling system to support DFS 
search. gSpan discovers all the frequent subgraphs 
without candidate generation and false positives 
pruning. It combines the growing and checking of 
frequent subgraphs into one procedure, thus 
accelerates the mining process. 

b) DFS Subscripting: When performing a depth first 
search [3] in a graph, we construct a DFS tree. One 
graph can have several different DFS trees. For 
example, graphs in Fig.1(b), Fig.1(c) and Fig.1(d) are 
isomorphic to that in Fig.1(a). The thickened edges in 
Fig.1(b)-(d) represent three different DFS trees for the 
graph in Fig.1(a). The depth first discovery of the 
vertices forms a linear order. We use subscripts to 
label this order according to their discovery time [3]. i 
< j means vi is discovered before vj . We call v0 the 
root and v1the rightmost vertex. The straight path from 
v0 to vn is named the rightmost path. In Fig.1(b)-(d), 
three different subscripting are generated for the graph 
in Fig.1(a). The right most path is (v0, v1, v4) & in 
Fig.1(b), (v0, v4) in Fig.1(c), and (v0, v1, v2, v4) in 
Fig.1(d). We denote such subscripted G as GT. 

 

 
Figure 1. Depth First Search Tree. 

Table I. 1 DFS code for Figure.1(b) – (d) 

 
 
Given a graph G, we perform a depth first search (DFS) 

over its vertices, and create a DFS spanning tree, i.e., one 
that covers or spans all the vertices, which was obtained by 
starting at v1 and then choosing the vertex with the smallest 
index at each step. Edges that are included in the DFS tree 
are called forward edges, and all other edges are called 
backward edges. Backward edges create cycles in the graph. 

c) DFS Code Lexicographic: 
We write 
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If either: 
Here <e is an ordering on the edges and <l is an ordering 

on the vertex and edge labels. The label order <l is the 
standard lexicographic order on the vertex and edge labels. 
For example the label tuple <a,a,r> <l <a,b,q> since if we 
compare the two tuples in an element-wise manner, we find 
that L(vj) = a < b = L(vy ). The edge order <e is more 
involved. Let ei j = (vi,vj ) and exy = (vx,vy ). We write eij 
<e exy if the following conditions are met: 
i) If eij and exy are both forward edges, then a) j < y or, 

b) j  
= y and i > x.  
ii) If eij and exy are both backward edges, then a) i < x or 

b) i = x and j < y.  
iii) If eij is a forward and exy is a backward edge, then i <  
y.  

iv) If eij is a backward and exy is a forward edge, then j 
*  

x.  
Given the DFS codes for any two graphs, we can 

compare them tuple by tuple to check which is smaller.  

III. FREQUENT FRAGMENT  

Given a graph database D, |Dg| is the number of graphs 
in D where g is a subgraph. |Dg| is called (absolute) support, 
denoted by support(g). A graph g is frequent if its support is 
no less than a minimum support threshold, minSup. As one 
can see, frequent graph is a relative concept. Whether a 
graph is frequent depends on the setting of minSup[2]. We 
use the term “fragment" to refer to a small subgraph (i.e., 
substructure) existing in graph databases and query graphs. 
Figure 3 shows two frequent fragments in the sample 
database with minSup = 2.  

 
Figure 2. A Sample Database 

any graph with q embedded must contain q's sub-graphs, 
Df is a candidate answer set of query q. If minSup is low, it 
is not expensive to verify the small number of graphs in Df 
in order to find the query answer set. Therefore, it is feasible 
to index frequent fragments for graph query processing[4]. 

IV. DISCRIMINATIVE FRAGMENT 

Do we need to index every frequent fragment? Let's have 
some analysis. If two similar frequent fragments, f1 and f2, 
are contained by the same set of graphs in the database, i.e., 
Df1 = Df2 , it is probably wise to include only one of them 
in the feature set[2]. Generally speaking, among similar 
fragments with the same support, it is often sufficient to 
index only the smallest common fragment since more query 
graphs may contain the smallest fragment. That is to say, if 
f’, a supergraph of f, has the same support as f, it will not be 
able to provide more information than f if both are selected 
as indexing features. Thus f’ should be removed from the 
feature set. In this case, we say f’ is not more discriminative 
than f. 

All the graphs in the sample database (Figure 2) contain 
carbon-chains: c, c-c, c-c-c, and c-c-c-c. Fragments c-c, c-c-
c, and c-c-c-c do not provide more indexing power than 
fragment c. Thus, they are useless for indexing. 

Let us examine the query example in Fig.4. As shown 
below, carbon chains, c - c, c - c - c, and c - c - c - c, are 
redundant and should not be used as indexing features in 
this dataset. The carbon ring (Fig.5(c)) is a discriminative 
fragment since only graph (c) in Figure 2 contains it while 
graphs (b) and (c) in Figure 2 have all of its subgraphs. 
Fragments (a) and (b) in Fig.5 are discriminative too. 

 
 

Figure 3. Frequent fragment 

 
Figure 4. A Sample Query 

 
Figure 5. Discriminative Fragment 

Frequent fragments expose the intrinsic characteristic of 
a graph database. Suppose all the frequent fragments with 
minimum support minSup are indexed. Given a query graph 
q, if q is frequent, the graphs containing q can be retrieved 
directly since q is indexed. Otherwise, q probably has a 
frequent subgraph f whose support may be close to minSup. 
Since  

V. INDEX CONSTRUCTION  

Once discriminative fragments are selected, we use 
efficient data structures to store and retrieve them. Each 
fragment is associated with an id list: the ids of graphs 
containing this fragment. We present the details of index 
construction. 

Steps for Index construction: 
a. Find the DFS code of each discriminative fragment.  
b. Find the each DFS fragments id list associated with 

them.  
c. Convert each DFS fragment into its equal graphic 

hash value by using Graphic Hash Code function. 
(We can map any graph to an integer by hashing its 
canonical label). 

Graphic Hash Code can help quickly locating fragments 
in the index structure.  9. Cq =  Si 

Algorithm 1: Index Construction 
10. return Cq 

a. Input: Graph Database D (Discriminative fragment 
with DFS code). 

b. Output: Index Structure with hash_value and its 
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associated id list. 
c. For each Discriminative fragment do 
d. Convert hash_ value by using Graphic Hash Code  
e. Pi = hash_value with it associated id list 

/* Pi is the Data Structure which is store the hash_value and 
its associated id list */ 

f. end do 

VI. HASH CODE GENERATION 

Given a sequence hash function h and a graph g, 
h(dfs(g)) is called graphic hash code. We treat the graphic 
hash code as the hash value of a graph. If two graphs g and 
g0 are isomorphic, then h(dfs(g)) = h(dfs(g0)). 

Algorithm 2: Graphic Hash Code 
a. Input: Graph Database D (Discriminative fragment 

with DFS code).  
b. Output: hash_value (unsigned long integer) of each 

DFS code.  
c. for each Discriminative fragment do  
d. hash_value = convert unsigned long to each DFS 

fragment.  
e. Store hash_value to appropriate Data Structure  
f. end do 

VII. SEARCHING 

Given a query q, we enumerate all its fragments and 
locate them in the index. Then it intersects the id lists 
associated with these fragments. 

Algorithm 3: Searching 
a. Input: Graph database D with id list, Query q.  
b. Output: Candidate answer set Cq.  
c. let Cq = NULL  
d. for each fragment x  q do  
e. if x  Di 
f. Si = id list of Di /* Si is the Data Structure which is 

store the id list */  
g. end if  
h. end do. 

VIII. EXPERIMENTAL RESULT 

We implement our project work for 60 different types of 
graph data in Intel core2 Duo processor with 2GB RAM. 
The entire 60 graph is in above described input format. Each 
graph stored in different text file, and Entire 60 graphs 
stored in an another text file. 

a. Discriminative fragment reduce the index search 
space. see table: 

 
b. Time Comparison between Hash Code and String 

Matching. 
Table: 2 

Support No. of 
frequent 
fragment 

No. Of 
Discrinative 
fragment 

String 
Matching 
(in 
seconds) 

Hash code 
(in 
seconds) 

2 8583 167 340 315 

3 4374 124 230 220 

4 2472 100 150 145 

5 1312 80 100 96 

6 968 66 95 92 

c. Query Perfection: If we work with minimum support 
then our query result is more accurate. 

Table: 3 

Search 
Graph 

Found 
with 
support 2 

Found 
with 
support 3 

Found 
with 
support 4 

Found with 
support 5 

1 1 1 1 1 
2 2 2 2+3+4 2+3+4 
3 3 3 3 3 
4 4 4 4 4 
5 5 5 5 5+10+14+24+52 
6 6 6 6 6 
7 7 7 7 7+57 
8 8 8 8 8 
9 9 9 9 9 

10 10 10 10 10 

IX. CONCLUSION 

Graph indexing plays a critical role at effiient query 
processing in graph databases which have gained increasing 
popularity in bioinformatics, Web analysis, and other 
applications involving complex structures. Previous graph 
indexing approaches take paths as indexing features and 
suffer from overly large index size and substantial query 
processing overhead. 

In this paper, we have explored a rather different 
approach to graph indexing: indexing based on frequent 
subgraph structures and discriminative subgraph structures. 
Our performance study shows that our graph indexing 
method performs better and consumes less space. 
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