
Volume 3, No. 7, Nov-Dec 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 290

ISSN No. 0976-5697

An Approach to Conceal Honeypot from Attacker
Mr. Dharmendra G. Bhatti*

Associate Professor
S. R. Institute of Management and Computer Application,

Bardoli, Gujarat, India
dgbhatti@yahoo.com

Ms. Sonal Bhakta
S. R. Institute of Management and Computer Application,

Bardoli, Gujarat, India
sonalbhakta@ymail.com

Ms. Ankita Shah
S. R. Institute of Management and Computer Application,

Bardoli, Gujarat, India
apshah_08@yahoo.co.in

Abstract: Honeypots are designed to attract the attackers and gather their information. It can be used to log an attacker’s activities, analyze its
behaviour and design new approaches to defend against it. As there is no human user working on the honeypot, there is absence of physical and
network activity on it. This can easily provide the identity of the honeypot to the attackers. In order to operate effectively, it is required to conceal the
honeypot from the attacker. Thus the attacker will attack on the host without knowing that it is a honeypot, and honeypot can collect more
information about the attacker. For concealing the honeypot, here we present honeypot as a normal host by sending dummy files over the network.
Generally honeypot does not contain any network traffic. So here we will generate network traffic around honeypot by using dummy files.

Keywords: Conceal Honeypot, Network Security

I. INTRODUCTION

General definition of honeypot is an information system
resource whose value lies in illegal/unauthorized use of that
resource. A honeypot is not designated as a production-
oriented component of an information infrastructure. Ideally,
none should be accessing honeypot; any interactions with a
honeypot are by definition unauthorized. Thus honeypot
identifies intruder and strengthen network security [1][2][3].

Honeypots can serve differently according to different
situations. Honeypots can be categorized into two forms: low-
interaction and high-interaction, as per the level of interaction
between attacker and a honeypot. Low-interaction honeypots
are simulated in such a way so that they cannot be exploited for
getting complete access to the honeypot by the attackers. While
high-interaction honeypots are design in such a way so that the
attackers can get maximum access to the honeypots.

Honeypots can also be classified according to how
honeypots are implemented. A honeypot with its own OS and
IP address is a real honeypot means a physical honeypot, and a
honeypot with imaginary IP address and emulated system is a
virtual honeypot [4][5].

The advantages of honeypots are as follows:
a. Fewer false positives since no legitimate traffic uses

honeypot
b. Collect smaller, higher-value, datasets since they only

log illegitimate activity
c. Work in encrypted environments
d. Do not require known attack signatures

There are some disadvantages of honeypots as listed below:
a. Can be used by attacker to attack other systems

b. Only monitor interactions made directly with the
honeypot - the honeypot cannot detect attacks against
other systems

c. They can potentially be detected by the attacker
There is a lack of physical and network activity on the

honeypots as there are no real human user works on honeypots.
Because of so the identity of the honeypot can easily be
revealed and once an identity of the honeypot is revealed, the
attacker can avoid attacking over that honeypot so that the
honeypot cannot gather information about that attacker.
Therefore, in order to detect the attacker and gather the
information about the attackers we need to conceal honeypot
from the attacker.

In this paper, we have proposed a model to conceal
honeypot from the attackers since the attackers can identify the
honeypot so that they can avoid honeypot while attacking. In
related work, various solutions to conceal honeypot, which are
till now exist, are discussed. In proposed model, our proposed
model for the solution of the problem of concealing honeypot
from the attackers is presented and discussed.

II. RELATED WORK

Ng, Jun Ping [6] says that, as there is no real human user
working on honeypots, so there is a lack of physical and
network activity on the honeypots. This will potentially give-
away of the honeypots’ identity to the attackers. So the
Honeypot have an autonomous mouse movements and
keystrokes. This will convince an attacker observing the
Honeypot that a human user is working on the machine, and
lead them to believe that this is a real production system.

Nandan Garg and Daniel Grosu [7], says that when a host
is probed, it gives certain response. This response is valuable

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 291

to the attacker as they can gain information about the
honeypots. One way a defender can avoid the mapping of
honeypots is to cleverly manipulate the response to the probe
and deceive the attacker.

They propose a game theoretic model considering two
players, the Attacker and the Defender (honeynet: contains
number of honeypots). The response of the attacker depends
on whether the host is a Honeypot or a regular host. The
response of the Honeypot may be generated such that to
conceal the identity of the Honeypot. But after a few probes an
attacker can successfully identify that a host is a Honeypot i.e.
the defender cannot infinitely deceive the attacker in believing
that Honeypot is a regular host.

Xinwen Fu, Bryan Graham, Dan Cheng, Riccardo Bettati,
and Wei Zhao [8], says that honeypot implementation fails
due to the low fidelity of emulation of the system components
by the honeypot and is emulated by timers in the honeypot.
When the timers are carelessly defined in the honeypot
implementation or are provided at insufficient accuracy by the
underlying OS, a timing signature emerges. An attacker may
construct a profile of a honeypot and launch a timing attack.

To camouflage honeyd and defeat the type of timing
attacks, the modified honeyd and underlying OS will support
for a high-fidelity emulation events. They have provided (a)
accurately configured link latencies, and (b) high-resolution
timers within the OS to solve this problem.

Sherif M. Khattab, Chatree Sangpachatanaruk, Daniel
Moss´e, Rami Melhem and Taieb Znati [9], says that
Honeypot are generally deployed at fixed location and on
machines other than the ones they are supposed to protect,
sophisticated attacks can avoid the honeypots. They propose a
roaming honeypots, a mechanism that allows the locations of
honeypots to be unpredictable and continuously changing. A
(continuously changing) subset of the servers is active and
providing service, while the rest of the server pool is idle and
acting as honeypots.

The benefits of roaming honeypots scheme are: Firstly,
idle servers detect attacker addresses so that all their
subsequent requests are filtered out, which is known as
filtering effect. Secondly, each time a server switches from
idle to active; it drops all its current connections, opening a
window opportunity for legitimate requests before the attack
re-builds up, which is known as the connection dropping
effect. Whereas the filtering effect defends the service against
attacks launched from outside a firewall (external attacks), the
connection-dropping effect mitigates attacks launched from
behind the firewall (internal attacks).

Neil C. Rowe, Han C. Goh [10], says that one of the best
ways to defend a computer system is to make attackers think it
is not worth attacking. Deception provides a large variety of
specific tactics that can confuse, scare away, or tie up an
attacker depending on the circumstances and the methods.
Honeypot can try to disguise their monitoring activities by
concealing their monitoring software and monitoring
messages.

The sebek tool of the honeynet project is a kind of
“defensive rootkit“. It conceals its monitoring process by
rewriting the process-listing utility of the OS to omit it, and
conceals its monitoring code by modifying the OS directory-

listing utility. Deception can delay or halt suspicious activity
when implemented as false error messages, demand on the
attackers, or outright stalling.

Asmund Nergard Nyre [11], says that the increased
dependence on computer systems to provide support for
critical services, calls for additional measures to guarantee the
continued deliverance of services even under attack. He
proposed a system capable of tolerating attacks, while
preserving the integrity, confidentiality and availability of the
system to its legitimate users.

Upon detecting an attack, the compromised server is
relieved from active duty and dynamically transformed into a
state of Honeypot, while letting the attacker retain control of
the server. By not alarming the attacker of the detection, they
are left wasting their time exploiting the honeypot, providing
system administrators with useful information in the
subsequent patching of the security hole.

S. Antonatos, M. Athanatos, J. Velegrakis, N.
Hatzibodozies, S. Ioannidis, E. P. Markatos, K. G.
Anagnostakis [12], says that it is not difficult for the attackers
to identify honeypots and develop blacklists to avoid them
when launching an attack. The Tor assumes that every sender
knows the address of the recipient. But here the address of the
Honeypot should remain hidden.

Tor offers “hidden services”, a functionality that permits to
hide the address of the recipient. In hidden services the
recipient gets a descriptor for its hidden service from a
centralized service lookup server. Afterward, it creates onion
paths to several introduction points. An introduction point can
be any onion router. It then advertises the descriptors of
introduction points and addresses to service lookup repository.
The clients only need to know the service descriptor.

Nathan Willis [13], says that attackers can be trips in two
ways: First, to slows them down by vastly increasing the
amount of work they must do to correctly identify the real
target machines on the network. The more you slow down the
attacker, the better you get a chances of catch them through
other methods. Second, no legitimate user on your network
will ever need to probe a Honeyd virtual server, because they
do not offer real services. Therefore any probes or connection
attempts are automatically red flags.

Many researchers have suggested different ideas for
improvement like decoy document [14], honeystat [15], virtual
honeypot [16][17][18], helpful to IDS [19], packet
fragmentation [20], botnet identification [21], assessing effect
[22], Java based honeypot[23]. Few other researchers
[24][25][26][27] have discussed improvements in architecture
and process. Special cases like spim honeypot [28], hybrid
honeypot [29], honeypot detection countermeasures [30], and
deception limitations [31] are also addressed by researchers.

III. PROPOSED MODEL

For concealing honeypot from attackers, the proposed
model consists of mainly two components:

a. Traffic Generator
b. Traffic Identifier

The general identity of the honeypot is that, only the
attackers are attacking on the honeypot. So based on the server

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 292

traffic an attacker can distinguish whether the server is
honeypot or a normal server. Honeypot is having the least
network traffic. Thus the traffic generator component will send
the request to the server to generate the network traffic on
honeypot. The request will be generated at the random time
interval. So when the attacker tries to detect that whether the
server is a honeypot or not, they will not be able to identify the
honeypot.

As to conceal the identity of honeypot; we are generating
dummy traffic. So it is required that we should differentiate the
dummy request from the actual attacker’s request. Thus to
differentiate the dummy request from the actual request we
proposed a component, which is traffic identifier. The traffic
identifier will differentiate the actual request from the dummy
request based on the sequence number set by the traffic
generator as well its IP address.

The sequence number will be sent to the server with the
packet. Before sending the request, the sequence number will
be set in encrypted format. The sequence number should be
encrypted because if an attacker may get the sequence number
it will not be able to get the original sequence number and thus
can’t get honeypot identity.

A. Traffic Generator:
The traffic generator component will work to generate the

dummy traffic over the honeypot. So the traffic generator
component will be installed on the client machines over the
network. Thus each client machine will send a request to the
honeypot server at random time interval using the traffic
generator.

The traffic generator component gets the current system
time and sets the curr_time and req_time. The req_time is the
time at which the dummy request has been sent.

Figure 1. Proposed Model of Concealed Honeypot

Now to send the request at random time interval, a random
number is generated and set as interval_time. So after every
interval_time, next request is been sent to the honeypot server
by the traffic generator component.

We need to differentiate the dummy request from the
attacker request; thus by adding the encrypted sequence

number in packet we can recognize the dummy request. So a
seq_number in encrypted form is set in the packet and a request
is sent over honeypot server.

After sending request, traffic generator will receive
response with encrypted seq_number in packet. The received
seq_number is the result of the incrimination of sent

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 293

seq_number, i.e. if client has sent n as seq_number, it will
receive n+1 as seq_number in response.

For sending the next request, the curr_time is compared
with the req_time and interval_time. When the curr_time
exceeds the req_time + interval_time, the next request will be
sent to the honeypot server.

B. Traffic Identifier:
The traffic identifier will differentiate the dummy request

from the actual attacker’s request. So the traffic identifier
component will be installed at the server side, which is on the
honeypot server.

Traffic identifier will retrieve the information from the
received request. It will retrieve the client’s IP address and
other packet information like seq_number. From the packet, it
will retrieve the seq_number and decrypt that seq_number.

After getting all the information it will search for an IP
address in the database and verifies the seq_number with the
expected seq_number according to the previous seq_number
sent to the client.

If this information is valid then it means that the user is
known client and request is the dummy request generated by
the traffic generator component. Thus an appropriate response,
with incremented seq_number stored in packet, is sent back to
the client.

But if the sender is an attacker then an appropriate
response is sent to the intruder. Also the honeypot will collect
all the other information related to the attacker and will store it
in appropriate manner.

Figure 2. Traffic Generation and Identification Steps

C. Database:
The database contains the log file consisting the request and

response details. It may possible that the attackers also keep an
eye on the information transferred during request and response.

So for concealing, an employee database is maintained with
basic information. Thus information is stored and accessed during
request-response so that intruder cannot discover honeypot.

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 294

IV. RESULT ANALYSYS

0
2
4
6
8

10
12

Honeypot Concealed
Honeypot

Web
ServerA

ve
ra

ge
 T

ra
ff

ic
 /

 H
ou

r

Servers

Server

Figure 3. Average traffic

Figure-3 shows an average traffic rate for normal honeypot,
concealed honeypot, and web server. From this chart we can
say that there is a significant difference between the average
traffic rate per hour over the web server and honeypot which is
not concealed. Because of so, an intruder can detect honeypot
since there is no traffic over the honeypot as compared to the
web server. While in case of concealed honeypot, there is no
significant difference between average traffic rate over the
concealed honeypot and the web server.

Figure-4 shows the traffic rate of concealed honeypot and
web server at particular time. Here, we can see that there is no
significant difference between traffic over the concealed
honeypot and web server. Thus if the traffic over the concealed
honeypot and/or over the web server is analyzed then the traffic
over the concealed honeypot will be found similar as over the
web server and so concealed honeypot will not be found as the
honeypot and will be assumed as web server by the intruders.

0

2

4

6

8

10

12

14

10:00
AM

11:00
AM

12:00
PM

1:00
PM

2:00
PM

3:00
PM

4:00
PM

A
ve

ra
ge

 T
ra

ff
ic

Concealed …

Figure: 4 Concealed Honeypot v/s Web Server

V. CONCLUSION

Generally honeypot is not accessed by client over the
network. It is just installed to gather the information about the
intruders. Unless the intruder does not directly attack over the

honeypot, honeypot is not able to recognize the intruder. So
there is no traffic over the honeypot. Thus an intruder can
easily identify a honeypot by scanning over its network
connection. So for concealing the honeypot, we are creating the
dummy traffic over the honeypot. This traffic will present
honeypot as a webserver and so the identity of the honeypot
will be concealed from the intruder. As dummy traffic is
generated, we need to differentiate it from the intruder’s attack.
Thus by implementing the traffic identifier we can differentiate
the dummy traffic from the intruder’s attack.

VI. REFERENCES

[1] Feng Zhang, Shijie Zhou. Zhiguang Qin, Jinde Liu,
“Honeypot: a Supplemented Active Defense System for
Network Security”, Proceedings of the Fourth International
Conference Parallel and Distributed Computing, Applications
and Technologies on 27-29 August 2003 [Print ISBN:0-7803-
7840-7, pp 231-235].

[2] Jim Yuill, Dorothy Denning, and Fred Feer, “Using
Deception to Hide Things from Hackers: Processes,
Principles, and Techniques”, The Journal of Information
Warfare, Volume 5, Issue 3, November 2006.

[3] Neil C. Rowe, "Deception in Defense of Computer Systems
from Cyber-Attack," chapter 13 in L. Janczewski and A.
Colarik, Cyber Warfare and Cyber Terrorism, pp. 97-104,
2007.

[4] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E.
Markatos, A. D. Keromytis, “Detecting Targeted Attacks
Using Shadow Honeypots”, 14th Conference on USENIX
Security Symposium – Volume 14, doi=10.1.1.124.8215, July
2005. (Article in a conference proceedings)

[5] Xinwen Fu, Wei Yu, Dan Cheng, Xuejun Tan, and Steve
Graham, “On Recognizing Virtual Honeypots and
Countermeasures, Dependable, Autonomic and Secure
computing”, 2nd IEEE International Symposium on
29/9/2006-1/10/2006, Print ISBN: 0-7695-2539-3. (Article in
a conference proceedings)

[6] Ng, Jun Ping, “Enhancing Honeypot Stealthiness”, Thesis of
Master of Science in Computer Science at Singapore-MIT
Alliance, June 2006, Unpublished.

http://www.comp.nus.edu.sg/~junping/docs/njp-msc-
thesis.pdf

[7] Nadan Garg and Daniel Grosu, “Deception in Honeynets: A
Game-Theoretic Analysis”, Proceedings of the 2007 IEEE
Workshop on Information Assurance, Print ISBN:1-4244-
1304-4, United States Military Academy, West Point, NY,
20-22 June 2007. (Article in a conference proceedings)

[8] Xinwen Fu, Bryan Graham, Dan Cheng, Riccardo Bettati,
and Wei Zhao, “Camouflaging Virtual Honeypots”,
Technical Report- Department of computer Science, Texas
A&M University, College station, TX 77843 – 3112, 2005,
Unpublished.

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 295

[9] Sherif M. Khattab, Chatree Sangpachatanaruk, Daniel
Moss´e, Rami Melhem, Taieb Znati, “Distributed Computing
Systems”, 2004. Proceedings. 24th International Conference,
2004, ISSN:1063-6927, Print ISBN:0-7695-2086-3. (Article
in a conference proceedings)

[10] Neil C. Rowe, Han C. Goh, “Thwarting Cyber Attack
Reconnaissance with Inconsistency and Deception”,
Information Assurance and Security Workshop, 2007. IEEE
SMC, 20-22 June 2007, Print ISBN:1-4244-1304-4. (Article
in a conference proceedings)

[11] Asmund Nergard Nyre, “Increasing Survivability by
Dynamic Deployment of Honeypots”, Master’s Thesis,
Norwegian University of Science and Technology, Faculty
of Information Technology, Mathematics, and Electrical
Engineering, April 2005, Unpublished.

http://www.sislab.no/NYRE_mastersthesis_printerfriendly.pd
f

[12] S. Antonatos, M. Athanatos, J. Velegrakis, N. Hatzibodozies,
S. Ioannidis, E. P. Markatos, K. G. Anagnostakis,
“Hooney@home:A New Approach to Large-Scale Threat
Monitoring”, Information Security Threats Data Collection
and Sharing, 2008. WISTDCS ’08. WOMBAT Workshop on
21-22 April 2008, Print ISBN:978-0-7695-3347-6. (Article in
a conference proceedings)

[13] Nathan Willis, “Weekend Project: Use HoneyD on Linux to
Fool Attackers”, 2011, Unpublished.

https://www.linux.com/learn/tutorials/472795:weekend-
project-use-honeyd-on-linux-to-fool-attackers

[14] Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis,
Salvatore J. Stolfo, “Baiting Inside Attackers Using Decoy
Documents”, SecureComm 2009, 5th International ICST
Conference on Security and Privacy in Communication
Networks, September 14-17,2009, Athens, Greece,
doi=10.1.1.150.1361, 2009. (Article in a conference
proceedings)

[15] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee,Julian
Grizzard, John Levine, and Henry Owen, “HoneyStat: Local
Worm Detection Using Honeypots”, 7th International
Symposium on Recent Advances in Intrusion Detection
Conference, Sophia Antipolis, France, doi=10.1.1.87.2299,
September 2004. (Article in a conference proceedings)

[16] Guillaume Chazarain, Benoˆıt Vallette d’Osia, Nicolas
Nobelis, Karima Boudaoud, “A virtual high-interaction
Honeypot”, I3S Laboratory, University of Nice Sophia
Antipolis, France, doi=10.1.1.97.4769, 2008, Unpublished.

[17] Xuxian Jiang, Dongyan Xu, Collapsar: “A VM-Based
Architecture for Network Attack Detention Center”, In
Proceedings of the 13th USENIX Security Symposium,
Volume 13. (Article in a conference proceedings)

[18] Xuxian Jiang, Dongyan Xu, Yi-Min Wang, “Collapsar: A
VM-Based Honeyfarm and Reverse Honeyfarm Architecture
for Network Attack Capture and Detention”, CERIAS and
Department of Computer Science, Purdue University, West
Lafayette IN 47907, Miscrosoft Research, Redmond, WA

98052, Available online 16 July 2012
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2643&
context=cstech

[19] Jako Fritz, “Hybrid Intrusion Detection Network Monitoring
with Honeypots”, Master’s thesis, University of Twente, 27
April 2011, Unpublished.
http://essay.utwente.nl/60830/1/MSc_J_Fritz.pdf

[20] Jon Oberheide, Manish Karir, “Honeyd Detection via Packet
Fragmentation”, Networking Research and Development,
Merit Network Inc., January 2006, Unpublished.

www.merit.edu/networkresearch/papers/pdf/2006/MTR-
2006-01.pdf

[21] Ping Wang, Lei Wu, Ryan Cunningham, Cliff C. Zou,
“Honeypot Detection in Advanced Botnet Attacks”,
International Journal of Information and Computer Security,
Volume:4, Issue:1, ISSN online: 1744-1773, ISSN print:
1744-1765, 2010

[22] Sze Li Harry Lim, “Assessing The Effect Of Honeypots On
Cyber-Attackers”, Thesis- Master Of Science in Computer
Science from Naval postgraduate School, December-2006,
Unpublished.

[23] V. Maheshwari, P. E. Sankaranarayanan, “Defeating Hackers
Through a Java Based Honeypot Deployment”, Information
Technology Journal, Volume:6, Issue:7, 2007

[24] P. Diebold, A. Hess, G. Schafer, “A Honeypot Architecture
for Detecting and Analyzing Unknown Network Attacks”,
Conference proceeding of Kommunikation in Verteilten
Systemen (KiVS), 14. ITG/GI-Fachtagung Kommunikation
in Verteilten Systemen (KiVS 2005) Kaiserslautern, 28.
Februar - 3. März 2005. (Article in a conference proceedings)

[25] Jim Yuill, Dorothy Denning, and Fred Feer, “Using
Deception to Hide Things from Hackers: Processes,
Principles, and Techniques”, The Journal of Information
Warfare, Volume 5, Issue 3, November 2006.

[26] Shubham Gupta, Vishal Singhal, “HONEYPOT: A Trap for
Hackers”, Proceedings of the 5th National Conference;
INDIACom-2011,Computing For Nation Development,
March 10 – 11, 2011. (Article in a conference proceedings)

[27] Suen Yek, “Implementing network defence using deception
in a wireless Honeypot”, Proceeding of 2nd Australian
Computer, Network & Information Forensics Conference
2004: Perth, Western Australia, 2004. (Article in a conference
proceedings)

[28] Aarjav J. Trivedi, Paul Q. Judge, Sven Krasser, “Analyzing
Network and Content Characteristics of Spim using
Honeypots”, SRUTI’07, Proceedings of the 3rd USENIX
workshop on Steps to reducing unwanted traffic on the
internet, doi=10.1.1.81.7693, 2007. (Article in a conference
proceedings)

[29] Kyi Lin Lin Kyaw, “Hybrid Honeypot System for Network
Security”, World Academy of Science, Engineering and
Technology, Volume 24, No, 44, 2008, Unpublished.

Dharmendra G. Bhatti et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov –Dec, 2012, 290-296

© 2010, IJARCS All Rights Reserved 296

[30] Lai-Ming Shiue, Shang-Juh Kao, “Countermeasure for
Detection of Honeypot Deployment”, Proceeding of
Internation Conference on Computer and Communication
Engineering, 2008. ICCCE 2008, Print ISBN : 978-1-4244-
1691-2. (Article in a conference proceedings)

[31] Maximillian Dornseif, Thorsten Holz, und Sven Müller,
“Honeypots and Limitations of Deception”, Lecture Notes in
Informatics Proceedings, Volume P-73, No. 14, 2005

http://subs.emis.de/LNI/Proceedings/Proceedings73/GI-
Proceedings.73-14.pdf

	INTRODUCTION
	RELATED WORK
	PROPOSED MODEL
	Traffic Generator:
	Traffic Identifier:
	Database:

	RESULT ANALYSYS
	CONCLUSION
	REFERENCES

