
 Volume 3, No. 6, Nov. 2012 (Special Issue) 

International Journal of Advanced Research in Computer Science 

CASE STUDY AND REPORT 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved    29 

ISSN No. 0976-5697 

CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 
 

A Survey on Process Migration
Vinita Sharma*  

M.Tech Scholar, Dept of CSE,  
KIET, Ghaziabad 

Dr. Vineet Sharma 
Associate Professor, Dept of CSE,  

KIET, Ghaziabad 

Abstract: The days of supercomputers and mainframes dominating computing are over. With the cost benefits of the mass production of smaller 
machines, the majority of today’s computing power exists in the form of PCs or workstations, with more powerful machines performing more 
specialized tasks. Even with increased computer power and availability, some tasks require more resources. Load balancing and process 
migration allocates processes to interconnected workstations on a network to better take advantage of available resources. 
Process migration is the act of transferring a process between two machines during its execution. It enables dynamic load distribution, fault 
resilience, eased system administration, and data access locality. With the increasing deployment of distributed systems in general, and 
distributed operating systems in particular, process migration is receiving more attention in both research and product development. As high-
performance facilities shift from supercomputers to networks of workstations, and with the ever-increasing role of the World Wide Web, we 
expect migration to play a more important role and eventually to be widely adopted. 
This paper reviews the field of process migration by summarizing the key concepts involved in it and by highlighting the benefits and challenges 
faced by the process migration. It also includes the experience of process migration in distributed operating system.  
 
Keywords:  process migration, fault resilience, load distribution, distributed systems. 

I. INTRODUCTION 

In a network of personal workstations, many machines 
are typically idle at any given time. These idle hosts 
represent a large deposited of processing power, many times 
it is greater than the available on any user’s personal 
machine in isolation. In recent years a number of 
mechanisms have been proposed or implemented to bring 
under conditions for effective use of idle processors .Here 
we are considering process migration mechanism for this 
purpose. 

A distributed operating system is the logical aggregation 
of operating system software over a collection of 
independent, networked, communicating, and physically 
separate computational nodes. [22] Individual nodes each hold 
a specific software subset of the global aggregate operating 
system. Each subset is a composite of two distinct service 
provisions. [18] The first is a ubiquitous minimal kernel, or 
microkernel, that directly controls that node’s hardware. 
Second is a higher-level collection of system management 
components that coordinate the node's individual and 
collaborative activities. These components abstract 
microkernel functions and support user applications.[6]An 
example of an distributed operating system in which  
process migration mechanism is implemented is 
“Amoeba”.Amoeba is a distributed operating system. It 
collects a huge Varity of single machines connected over a 
(fast) network to one, huge computer. It was originally 
developed at the Vrije Universiteit in Amsterdam by 
Andrew Tanenbaum and many more. Amoeba was always 

designed to be used, so it was deemed essential to achieve 
extremely high performance. Currently, it's the fastest 
distributed operating system. 

II. OVERVIEW OF PROCESS MIGRATION 

[13] 

This paper is organized in 6 sections. Section 1 provides 
the introduction about the process migration and distributed 
operating system. Section 2 describes the process migration 
in detail including homogeneous and heterogeneous types of 
process migration and steps involved in process migration 
algorithm. Section 3 explains the benefits of process 
migration. Section 4 highlights the challenges faced by 
process migration. Section 5 presents future research. 
Finally conclusion is given in section 6.  

A process may be considered as a program in execution. 
And “Process migration is the act of transferring an active 
process between two machines and restoring the process 
from the point it left off on the selected destination node.”[1] 

A. Goals:  

i.e. transferring an executing process from source machine 
to destination machine during its execution is called process 
migration. 

If we transfer the state of a process from one machine to 
another, we have migrated the process. The term state refers 
to all the information which is required to resume a process 
in a proper way and executing  it correctly. 

The goals of process migration are very closely tied to 
the applications that use migration, as described next. The 
primary goals include: 

 



Vinita Sharma et al, International Journal of Advanced Research in Computer Science, 3 (6), Nov, 2012, (Special Issue), 29-34 

© 2010, IJARCS All Rights Reserved    30 CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 
 

 
Figure 1: A view of Process Migration 

i. Resource locality: Processes which are running on a 
node which is distant from the node which houses the 
data that the processes are using tend to spend most of 
their time in performing communication between the 
nodes for the sake of accessing the data. Process 
migration can be used to migrate a distant process closer 
to the data that it is processing, thereby ensuring it 
spends most of its time doing useful work. 

ii. Resource sharing: Nodes which have large amount of 
resources can act as receiver nodes in a process        
migration environment. 

iii. Effective Load Balancing: Migration is particularly 
important in receiver initiated distributed systems, where 
a lightly loaded node announces its availability thereby 
enabling the arbitrator to provide its processing power to 
another node which is relatively heavily loaded. 

iv. Fault tolerance: This aspect of a system is improved by 
migration of a process from a partially failed node, or in 
the case of long running processes when different kinds 
of failures are probable. In conjunction with check 
pointing, this goal can be achieved. 

v. Eased system administration: When a node is about to be 
shutdown, the system can migrate processes which are 
running on it to another node, thereby enabling the 
process to go to completion, either on the destination 
node or on the source node by migrating it back. 

vi. Mobile computing: Users may decide to migrate a 
running process from their workstations to their mobile 
computers or vice versa to exploit the large amount of 
resources that a work station can provide. 

B. Applications: 
The following applications can be benefited from 

process migration: 
i. Distributed applications can be started on certain nodes 

and can be migrated at the application level or by using a 
system wide migration facility in response to things like 
load balancing considerations. 

ii. Multiuser Applications can benefit greatly from process 
migration. As users come and go, the load on individual 
nodes varies widely. Dynamic process migration can 
automatically spread processes across all nodes, 
including those applications that are not enhanced to 
exploit the migration mechanism. 

iii. Standalone Applications, which is pre emptable, can be 
used with various goals in mind. Such an application can 
either migrate itself, or it can be migrated by another 

authority. It is difficult to select such applications 
without detailed knowledge of past behavior, since many 
applications are short-lived and do not execute long 
enough to justify the overhead of migration 

iv. Long running applications, which can run for days or 
weeks on end, can suffer various interruptions, for 
example partial node failures or administrative 
shutdowns. Process migration can relocate these 
processes in the event of the occurrences of any of the 
events mentioned above. 

v. Migration-oriented Applications are applications that 
have been coded to explicitly take advantage of process 
migration. Dynamic process migration can automatically 
redistribute these related processes if the load becomes 
uneven on different nodes, e.g. if processes are 
dynamically created, or there are many more processes 
than nodes. 

vi. Mobile applications are the most recent example of the 
potential use of migration; for instance, mobile agents 
and mobile objects. These applications are designed with 
mobility in mind. Although this mobility differs 
significantly from the kinds of process migration 
considered elsewhere in this paper, it uses some of the 
same techniques: location policies, checkpointing, 
transparency, and locating and communicating with a 
mobile entity. 

vii. Migration-aware applications are applications that have 
been coded to explicitly take advantage of process 
migration. Dynamic process migration can automatically 
redistribute these related processes if the load becomes 
uneven on different nodes, e.g. if processes are 
dynamically created, or there are many more processes 
than nodes. 

C. Migration Algorithm [14]: 
Although there are many different migration 

implementations and designs, most of them can be 
summarized in the following steps: 

i. A migration request is issued to a remote node. After 
negotiation, migration has been accepted. 

ii. A process is detached from its source node by 
suspending its execution, declaring it to be in a migrating 
state, and temporarily redirecting communication as 
described in the following step. 

iii. Communication is temporarily redirected by queuing up 
arriving messages directed to the migrated process, and 
by delivering them to the process after migration. This 



Vinita Sharma et al, International Journal of Advanced Research in Computer Science, 3 (6), Nov, 2012, (Special Issue), 29-34 

© 2010, IJARCS All Rights Reserved    31 CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 

step continues in parallel with steps iv, v, and vi, as long 
as there are additional incoming messages. Once the 
communication channels are enabled after migration (as 
a result of step vii), the migrated process is known to the 
external world. 

iv. The process state is extracted, including memory 
contents; processor state (register contents); 
communication state (e.g., opened files and message 
channels); and relevant kernel context. The 
communication state and kernel context are OS 
dependent. Some of the local OS internal state is not 
transferable. The process state is typically retained on 
the source node until the end of migration, and in some 
systems it remains there even after migration completes. 
Processor dependencies, such as register and stack 
contents, have to be eliminated in the case of 
heterogeneous migration. 

v. A destination process instance is created into which the 
transferred state will be imported. A destination instance 
is not activated until a sufficient amount of state has 
been transferred from the source process instance. After 
that, the destination instance will be promoted into a 
regular process. 

vi. State is transferred and imported into a new instance on 
the remote node. Not all of the state needs to be 
transferred; some of the state could be lazily brought 
over after migration is completed. 

vii. Some means of forwarding references to the migrated 
process must be maintained. This is required in order to 
communicate with the process or to control it. It can be 
achieved by registering the current location at the home 
node (e.g. in Sprite), by searching for the migrated 
process (e.g. in the V Kernel, at the communication 
protocol level), or by forwarding messages across all 
visited nodes (e.g. in Charlotte). This step also enables 
migrated communication channels at the destination and 
it ends step iii as communication is permanently 
redirected. 

viii. The new instance is resumed when sufficient state has 
been transferred and imported. With this step, process 
migration completes. Once all ofthe state has been 
transferred from the original instance, it may be deleted 
on the source node. 

D.  Types of Process Migration: 
There are two types of process migration: 

i. Homogeneous process migration 
ii. Homogeneous process migration 

a. Homogeneous process migration:  
Homogeneous process migration involves migrating 

processes in a homogeneous environment where all systems 
have the same architecture and operating system but not 
necessarily the same resources or capabilities. Process 
migration can be performed either at the user-level or the 
kernel level. A brief overview of the two techniques and a 
few systems that implement them are given in the next 
sections. 

(a) User-level Process Migration 
User-level process migration techniques support process 

migration without changing the operating system kernel. 
User-level migration implementations are easier to develop 
and maintain but have two common problems: 

i. They cannot access kernel state which means that they 
cannot migrate all processes. 

ii. They must cross the kernel/application boundary using 
kernel requests which are slow and costly. 

User-level process migration facilities vary in complexity 
from the UNIX rsh command which allows static, remote 
execution of UNIX commands to Condor which allows 
dynamic migration of processes using check pointing. 
Another implementation relies on the cooperation between 
the process and the migration subsystem to achieve 
migration. The problem with these implementations is that 
without kernel access, they are unable to migrate processes 
with location dependent information and inter process 
communication. 

(b) Kernel Level Process Migration: 
Kernel level process migration techniques modify the 

operating system kernel to make process migration easier 
and more efficient. Kernel modifications allow the 
migration process to be done quicker and migrate more 
types of processes. Unfortunately, many older 
implementations have high overhead, long freeze times, and 
still cannot migrate all processes. 

b. Heterogeneous process migration: 
Homogeneous process migration allows good use of 

available network resources but is only applicable between 
machines with the same architecture and operating system. 
Many networks contain a variety of machines running 
different operating systems and provide other resources 
available on machines which have different architectures 
than the current machine where the process is executing. 
Using this computational power requires heterogeneous 
process migration. 

Heterogeneous process migration is process migration 
across machine architectures and operating systems. 
Obviously, it is more complicated than the homogeneous 
case because it must consider machine and operating 
specific structures and features, as well as transmitting the 
same information as homogeneous process migration 
including process state, address space, and file and 
communication information. Heterogeneous process 
migration is especially applicable in the mobile environment 
where is highly likely that the mobile unit and the base 
support station will be different machine types. It would be 
desirable to migrate a process from the mobile unit to the 
base station and vice versa during computation. This could 
not be achieved by homogeneous migration in most cases. 

There are 4 basic types of heterogeneous migration
(a) Passive object- only data is transferred and must be 

translated. 

 [6]: 

(b) Active object, migrate when inactive- The process is 
migrated when it is not executing. The code exists at 
both sites, and only the data need be transferred and 
translated. 

(c) Active object, interpreted code- The process is 
executing through an interpreter so only data and 
interpreter state need be transferred. 

(d) Active object, native code- Both code and data need to 
be translated as they are compiled for a specific 
architecture. 



Vinita Sharma et al, International Journal of Advanced Research in Computer Science, 3 (6), Nov, 2012, (Special Issue), 29-34 

© 2010, IJARCS All Rights Reserved    32 CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 

III. CHALLENGES IN PROCESS MIGRATION 

The process migration mechanism faces a variety of 
challenges. Because designing a process migration facility 
enables the movement of an executing process from one 
host to another. And hence it includes issues like when and 
where to migrate which process and achieving the goals of 
load balancing and transparency with as low overhead as 
possible presents a big challenge. The main issues related to 
migration are as follows: 

i. The one of the main issue is Allocation and scheduling 
i.e. how is a target node chosen? What are the factors 
taken into consideration while choosing a destination 
host? Is load balanced dynamically, or only reallocated 
during special circumstances like eviction or imminent 
host failure? Considering that all of the above systems 
represent loosely coupled environments, how much of a 
difference can such a consideration make? Similarly, 
what is the best allocation policy for an I/O intensive 
process? 

ii. Once a target has been chosen, how is the process state 
saved and transferred? For e.g., would virtual memory 
pages be transferred all at once, increasing the latency 
between process suspension and resumption, or 
transferred on a demand-paged basis thus speeding up 
migration? An important consideration over here is how 
much of "residual dependency" [8]

iii. How is migration supported by the underlying file 
system for kernel level schemes? Are files assumed to 
be accessible from any point? For transparency, a 
transparent file system would itself seem to be a 
prerequisite. 

 do we allow on the 
ex-host? 

iv. How are name spaces dealt with? Do process Ids, file 
descriptors etc. change with migration? How does global 
naming help? How are sockets and signals managed? 

v. What are the scaling considerations that have been 
incorporated into the design? 

vi. Transparency: What is the level of transparency? An 
important goal in process migration is transparency. This 
means that neither the process being migrated, nor user 
processes with which it is communicating, should be 
aware of the migration. 

vii. Memory Transfer: Moving the content of a large virtual 
address space stands out as the bottleneck in process 
migration. 

viii. Residual Dependencies: A particular problem in 
migrating a process is the routing of messages addressed 
to the migrated process, since the sender of the message 
need not know about the migration. One way of handling 
this is for the source machine to redirect messages to the 
destination machine. This is an example of a residual 
dependency. In general residual dependencies are 
undesirable because of the chain of dependencies when a 
process is migrated several times and the continuing use 
of resources on the source machine. This has detrimental 
effects on both performance and reliability. 

IV. BENEFITS OF PROCESS MIGRATION 

The benefits of process migration are many and varied, 
especially so nowadays, with the rapid increase in 
distributed and networking systems. These are discussed 
below. 

i. Dynamic load distribution is possible in 
multiprocessing systems to balance the load on the 
different processors/nodes, by migrating processes from 
overloaded nodes to less loaded ones. 

ii. Fault resilience can be achieved in such systems, by 
migrating processes from nodes that may have 
experienced a partial failure or are likely to fail 
completely in the immediate future. 

iii. Improved system administration can be achieved by 
migrating processes from the nodes that are about to be 
shut down or otherwise made unavailable. 

iv. Data access locality is possible to provide in wireless or 
fixed mobile systems, by migrating processes closer to 
the source of some data as the user moves from one 
network or cell to another. 

v. Resource sharing is possible on a grid, by migration of 
a process to a specific node that is equipped with a 
special hardware device, large amount of free memory or 
some other unique resource. 

vi. Mobile computing also increases the demand for 
migration. Users may want to migrate running 
applications from a host to their mobile computer as they 
connect to a network at their current location or back 
again when they disconnect. 

vii. Reliability is achieved through Process migration 
because it is able to move a copy of a process (replicate) 
on another node hence improves system reliability. 

viii. Security: A process dealing with sensitive data may be 
moved to a secure machine (or just to a machine holding 
the data) to improve security. 

ix. High performance cluster computing systems have 
used process migration to balance the workload on their 
constituent computers and thus improve their overall 
throughput and performance 

x. Improved average turnaround time: turnaround time 
of a process is total time between submission of a 
process and its completion. 

V. FUTURE RESEARCH 

The turnaround time of a job 
running on a cluster is very important for both the users 
as well as the system administrators. But any event 
which causes the job to fail, results in the wastage of all 
the computations done till that point. The job has to be 
restarted all over again. This results in increase in the 
average turnaround time of a job, which is not desirable 
in a production environment. An approach to address 
this issue is to transfer the execution context of a running 
process from a failing to a healthy machine. This is 
achieved by saving the execution context of a running 
process at regular intervals of time. The saved execution 
context is called checkpoint. 

After around 10 years, process migration is still a field of 
active research and many of its benefits are yet to be 
realized. Process migration and load balancing algorithms 
have been around for quite a while. It is well-known what 
has to be transferred during migration, so process migration 
algorithms can only be improved by transmitting this data in 
the most efficient way. 

However, determining when to migrate and measuring 
processor load still has important research applications. 
Deciding when to migrate represents the common problem 
in distributed computing of making decisions with 
incomplete information. Research into predictive measures 



Vinita Sharma et al, International Journal of Advanced Research in Computer Science, 3 (6), Nov, 2012, (Special Issue), 29-34 

© 2010, IJARCS All Rights Reserved    33 CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 

of load would be useful. It may be possible to determine 
future load by examining past requirements and current 
process properties. Heterogeneous process migration is a lot 
more interesting research area, but it remains to be proven 
that it is useful and worth the cost. An interesting benefit of 
research in this area is improving languages and compilers 
to provide better migration and heterogeneity support. 

An important advanced application of process migration 
is in the utilization of networks of workstations (NOWs). 
Many organizations have massive computing power 
available when workstations are combined over a network. 
Unfortunately, current operating systems and programs do 
not take advantage of most of these resources. As an 
extension to process migration, process division would be 
useful. Process division would be similar to parallel 
processing except it is more transparent to the programmer. 
The goal would be the integration of a programming 
language/compiler, which allows the programmer to specify 
what parts of the process can be done in parallel or 
remotely, and a distributed operating system, which uses 
this specification and current processor loads to divide the 
process among various processors (maybe in a 
heterogeneous fashion) transparently at run-time for the 
user. This would result in increased machine utilization and 
some increased parallelism and performance for individual 
applications. 

VI. CONCLUSION 

This paper is a survey of process migration. Process 
migration involves transferring a running process between 
machines. In homogeneous process migration, this transfer 
is between machines of the same type, while heterogeneous 
process migration transfers processes between machines of 
different architectures and operating systems. 

Process migrations are efficient mechanisms to be used 
in the improvement or development of high performance 
computer systems. It allow for better utilization of networks 
of workstations In particular, we demonstrate that the 
process migration is very crucial to be used to enable 
dynamic load balancing, excellent system administration, 
efficient resource utilization, fault resilience, and data access 
locality. Despite of these primary benefits here we also 
explained other benefits provided by process migration, and 
challenges or issues process migration mechanism have to 
deal with. 

VII. REFERENCES 

[1] Barak, A. and Litman, A. (August 1985). MOS: a 
Multicomputer Distributed Operating System. Software – 
Practiceand Experience, 15(8):725–737. 

[2] Chris Steketee, Wei Ping Zhu, and Philip Moseley School 
of Computer and Information Science, University of South 
Australia, TheLevelsSA5095, Australia. Chris. 
Steketee@Unisa.edu.au 

[3] Douglis, F. and Ousterhout, J. (September 1987). Process 
Migration in the Sprite Operating System. Proceedings of 
the Seventh International Conference on Distributed 
Computing Systems, pages 18–25. 

[4] Douglis, F. and Ousterhout, J. (August 1991). Transparent 
Process Migration: Design Alternatives and the Sprite 
Implementation. 

[5] D. Eager and E. Lazowska and J. Zahorjan: The Limited 
Performance Benefits of Migrating Active Processes for 
Load Sharing. In Conf. on Measurement & Modeling of 
Comp. Syst., (ACM SIGMETRICS), May 1988, pages 
63—72 

[6] Distributed Operating Systems: The Logical Design, 1st 
edition Goscinski, A. 1991 Distributed Operating Systems: 
the Logical Design. 1st. Addison-Wesley Publishing Co., 
Inc. 

[7] E. H. Baalbergen, Parallel and distributed compilations in 
loosely-coupled systems: a case study,Proceedings of 
Workshop on Large Grain Parallelism, Providence, RI, 
October 1986 

[8] Frederick Douglas: Transparent Process Migration in the 
Sprite Operating System (PhD Thesis,University of 
California, Berkeley), September 1990. 

[9] Fred Douglis and John K. Ousterhout. Transparentprocess 
migration: Design alternatives andthe Sprite 
implementation. Software – Practiceand Experience, 
21(8):757-785, 1991 

[10] F. Douglis and J. Ousterhout, Process migrationin the 
Sprite operating system, Proceedings ofthe 7th 
International Conference on DistributedComputing 
Systems, IEEE, Berlin, West Germany,September 1987, 
pp. 1825. 

[11] F. Douglis and J. Ousterhout: Transparent Process 
Migration: Design Alternatives and the Sprite 
Implementation. In Software -- Practice and Experience, 
volume 21, number 8, pages 757--785, August 1991.  

[12] http://en.wikipedia.org/wiki/Distributed_operating_system 

[13] http://fsd-amoeba.sourceforge.net/ 

[14] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, 
Richard Wheeler And Songnian Zhou,  Process Migration , 
Hp Labs,  At&T Labs–Research, Tog Research Institute, 
Emc, And University Of Toronto And Platform 
Computing. 

[15] M.Rasit Eskicioglu. design issues in process migration 
facilities in distributed system, 199, pages 414-424 

[16] J.M. Smith. A survey of process migration mechanisms. 
Technical report, Columbia University, 1995 

[17] M. Litzkow, M. Livny, and M. Mutka. Condor – a hunter 
of idle workstations. In Proceedings of the 8th International 
Conference on Distributed Computing, 1988. 

[18] Nutt, G. J. 1992 Centralized and Distributed Operating 
Systems. Prentice Hall Press. 

[19] Peter Smith and Norman C. Hutchinson. Heterogeneous 
process migration: The Tui system. Technical Report TR-
96-04, UBC Computer Science Department, Vancouver, 
B.C., February 1996. 

[20] Ramon LawrenceDepartment of Computer Science 
University of Manitobaumlawren@cs.umanitoba.ca, a 
Survey of Process Migration Mechanisms, May 29, 1998 



Vinita Sharma et al, International Journal of Advanced Research in Computer Science, 3 (6), Nov, 2012, (Special Issue), 29-34 

© 2010, IJARCS All Rights Reserved    34 CONFERENCE PAPER 
II International Conference on Issues & Challenges in Networking, 

Intelligence & Computing Technologies 
Organized by Krishna Institute of Engineering and Technology 

(KIET) Ghaziabad, India 

[21] Sunil Thulasidasan University of Southern California, 
thulasid@usc.edu, Issues in Process Migration December 
15, 2000 

[22] 

[23] Y. Artsy and R. Finkel, Designing a process migration 
facility: the Charlotte experience, IEEE Computer, 22, (9), 
4756 (1989) 

Tanenbaum, Andrew S. 1993 Distributed operating 
systems anno 1992. What have we learned so far? 
Distributed Systems Engineering, 1, 1 (1993), 3-10 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 


	OVERVIEW OF PROCESS MIGRATION
	Goals:

	Figure 1: A view of Process Migration
	Applications:
	Migration Algorithm [14]:
	Types of Process Migration:

	Homogeneous process migration:
	User-level Process Migration
	Kernel Level Process Migration:

	Heterogeneous process migration:
	CHALLENGES IN PROCESS MIGRATION
	BENEFITS OF PROCESS MIGRATION
	FUTURE RESEARCH
	CONCLUSION
	REFERENCES

