

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

Handling Missing Values in A Dataset

Emeka, Chinedu E*	Okonkwo Obi R
Department of Computer Science	Department of Computer Science
Nnamdi Azikiwe University, Awka	Nnamdi Azikiwe University, Awka
Anambra State, Nigeria	Anambra State, Nigeria
me@chineduemeka.com	oobi2971@ yahoo.com

Abstract: In predictive data mining, all issues pertaining to missing values in a dataset must be resolved before modeling can commence. Careful analysis and planning is required in the process of filling missing values to avoid introduction of artificial patterns, which may erroneously be discovered during modeling. In this work, four techniques: "Replacement with mean", "Replacement with nearest neighbor", "Replacement with regression analysis" and "Discard columns with missing values" were used to fill missing values in "offences against persons" 1980 - 2008 dataset obtained from the Nigeria Police Force. The dataset was divided into two; test set 1980 - 2003 (containing the filled in values) and holdout sample for validation 2004 - 2008. The test data was used to predict the holdout sample data – the objective being to determine which technique predicted the best match to actual data. The "Discard columns with missing values" technique achieved a correlation coefficient of -0.45 in one run. This work has demonstrated that missing values in a dataset can be handled and need not abort the data mining process.

Keywords: data mining; missing values; data preparation; replacement; correlation

I. INTRODUCTION

The data mining process can be broadly divided into four stages. These stages are: (1) Problem Definition, (2) Data Gathering & Preparation, (3) Model Building & Evaluation and (4) Knowledge Deployment - see Fig. 1 below. Once the problem definition has been articulated by translating the real world situation into a more tangible and useful data mining problem statement, the data gathering and preparation stage commences. One of the main problems encountered during data gathering & preparation is how to deal with missing values. This issue is investigated in this work using the dataset "Offences against persons" (1980 – 2008) obtained from the Nigeria Police Force (NPF) [1][2][3].

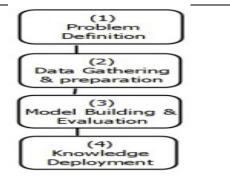


Figure 1: The Data mining process

The NPF compiles crimes in categories of offences. One of these categories is offences against persons which comprises of: Murder, attempted murder, manslaughter, suicide, attempted suicide, grievous harm & wounding, assault, child stealing, slave dealing, rape & indecent assault, kidnapping, unnatural offences, other offences (related to crimes against persons). Table 1 below shows offences against persons from 1980 – 2008.

Year	Murder	attempted murder	manslaugh ter	suicide	attempted suicide	g/harm & wounding	assault	child stealing	slave dealing	rape/indice nt assault	kidnapping	unnatural offences	other offences
1980	1633	183	79	261	-	10571	37203	390	15	2361	-	170	3019
1981	1520	184	46	183	-	11559	39402	252	6	2079	-	356	8759
1982	1786	-	218	481	-	15507	55153	360	21	2805	-	398	1253
1983	1857	223	174	223	-	15758	52204	197	25	1775	-	425	18678
1984	1548	193	123	197	142	13439	49413	199	19	2647	265	328	17741
1985	1427	186	87	223	207	16824	43824	209	67	2438	388	529	14557

Table 1: Offences against persons

Emeka, Chinedu E et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012.	104-109
---	---------

1986	1539	181	94	192	155	15965	50009	125	27	2763	281	812	48166
1987	1657	208	65	133	138	15445	49472	157	41	2248	330	806	-
1988	1688	195	51	700	106	15388	60775	240	41	2368	387	697	-
1989	1586	157	69	176	98	15851	51757	95	33	2032	361	1610	25037
1990	1587	157	69	126	102	16429	49291	204	56	2181	374	778	25004
1991	1502	174	53	164	111	14775	51312	174	28	2227	354	314	23228
1992	1452	228	48	156	135	16491	53320	230	13	2261	400	311	21715
1993	1684	304	44	182	87	16361	51918	97	42	2307	371	289	20086
1994	1629	259	20	200	291	17167	46924	131	33	2364	461	685	20114
1995	1585	321	25	229	120	16300	46543	175	16	2364	415	462	18227
1996	1561	307	21	238	77	17605	52747	146	7	2198	373	419	16922
1997	1730	250	18	272	58	14720	42815	303	17	2585	377	435	17355
1998	1670	248	27	313	43	14362	40764	107	11	2249	282	516	17009
1999	1645	220	14	323	30	15931	33881	147	21	2241	342	456	13467
2000	1255	76	101	146	41	9756	17909	101	11	1529	243	376	12097
2001	2120	253	14	241	27	15241	37531	116	45	2284	349	434	17349
2002	2117	267	13	152	29	17580	29329	55	17	2084	337	277	14475
2003	2136	233	6	191	38	17666	29125	39	18	2253	410	306	15037
2004	2550	315	23	131	19	18733	29863	45	18	1626	349	265	11600
2005	2074	283	11	128	20	22858	33991	80	14	1835	798	371	9333
2006	2000	389	2	199	51	26434	32838	59	11	1718	372	361	10151
2007	1981	328	11	154	43	6175	15136	65	5	1545	277	585	8523
2008	1956	261	17	141	21	6405	14692	64	10	1359	309	233	9647

The Police dataset is characterized by unrecorded values in the following years:

year	Att murder	Att	kid	Other
		suicide		offences
1980		Х	Х	
1981		Х	Х	
1982	Х	Х	Х	
1983		Х	Х	
1987				Х
1988				Х

Key : X – years with missing values (unrecorded data)

Unrecorded data can be broadly categorized into Missing and Empty values. Empty values have not been initialized and are not known. In other words, empty values have no corresponding real world values. On the other hand, missing values have corresponding real world values that were not captured during data collection. In data mining, it is important to resolve all issues pertaining to missing and empty values before data can be used for modeling. Handling of missing values is an important aspect of data preparation. Often times, fields with missing values arise from not capturing the available data. For example, in 1982, 1786 cases of murder were recorded while no case of attempted murder was recorded. For this to be true, it means that every one who tried to murder somebody was successful 100% (all) of the time.

This clearly indicates that the value is not an "empty" value but a "missing" value. For this same reason, the unspecified values for attempted suicide from 1980 – 1983 can be assume to be missing values. "Other offences" is an aggregation of offences against persons not specifically suited for inclusion in any of the twelve defined categories. In 1986, 48166 "Other offences" were recorded and in 1989, 25037 "Other offences" were recorded. However, in 1987 and 1988, no "Other offences" were recorded. It is unlikely that the NPF prevented all "Other offences" in those two years but failed to do so in other years. Therefore, this is also a case of "missing" values. For the same reason, the unrecorded values for kidnapping (1980 – 1983) are regarded as "missing" values.

According to Pyle [4], the general problem with missing values is two fold.

- a. There may be some information content, predictive or inferential, carried by the actual pattern of measurements missing.
- b. In creating and inserting some replacement values for missing values, care must be taken to insert values that neither adds nor subtracts information from the dataset.

The objective of this study is to propose a suitable technique that can be used to create and insert replacement values for missing values in a dataset bearing in mind the constraint placed by (**b**).

II. METHODOLOGY

The following techniques were used to derive values for the missing fields.

- *a. Replacement with mean:* in this case, the mean of the column with a missing field is used to replace any missing field in the column.
- b. Replacement with nearest neighbor: in this case, the value nearest to a missing field in the column with the missing field is used to replace the missing field. If preceding and succeeding values exist, the preceding value is selected.
- c. Replacement with regression analysis: in this case, a regression equation is derived for the dependent variable (column with a missing value). The regression equation is then used to compute a value for the missing field.
- *d. Discard columns with missing values:* in this case, any column with a missing value is discarded.

The correlation coefficient is a measurement of the strength of the linear relationship between two variables. The resulting values are always between -1 and +1. A result value near or equal to 0 implies little or no linear relationship between actual and predicted values. A value close to 1 indicates a strong positive linear relationship and a value close to -1 indicates a strong negative linear relationship. The formula for computing Correlation coefficient is:

$$r_{xy} = \frac{\Sigma XY - \frac{(\Sigma X)(\Sigma Y)}{n}}{\sqrt{\left[\left(\Sigma X^2 - \frac{(\Sigma X)^2}{n_x}\right)\left(\Sigma Y^2 - \frac{(\Sigma Y)^2}{n_y}\right)\right]}}$$

Where $\Sigma Y = \text{sum of the actual observed values}$, $\Sigma X = \text{sum of the predicted values}$, $\Sigma Y^2 = \text{sum of squares of the actual observed values}$, $\Sigma X^2 = \text{sum of squares of the predicted values}$, $\Sigma XY = \text{sum of each actual observed value multiplied by its corresponding predicted value and n is the number of observations. The correlation coefficient is suitable to determine the best replacement technique i.e. the technique that produces the highest correlation coefficient will be adjudged the best for filling missing values in the dataset used in this study.$

Tables 3 and 4 shows the values derived for the missing fields using "replacement with mean" and "replacement with nearest neighbor" respectively.

Table 3: Replacement of missing values with mean

year	Att murder	Att suicide	kid	Other offences
1980		88	368	
1981		88	368	
1982	235	88	368	
1983		88	368	
1987				16243
1988				16243

Table 4: Replacement of missing values with nearest neighbor

year	Att murder	Att suicide	kid	Other offences
1980		142	265	
1981		142	265	
1982	184	142	265	
1983		142	265	
1987				48166
1988				48166

Regression analysis is used to investigate relationships between variables. In simple linear regression, there is a single independent variable (X) and a single dependent variable (Y). Multiple linear regression is an extension of simple linear regression in which more than one independent variable (X) is used to predict a single dependent variable (Y). To generate a multiple linear regression model, estimates for the coefficients are derived from the training data. The objective of the process is to identify the best fitting model for the data. All the independent variables play a role in determining the dependent variable therefore an expert with knowledge of the subject matter is required to determine variables relevant to the analysis at hand. In this case, it is assumed that all the variables in "offences against persons" are relevant. The regression equations are:

attempted murder = 122.039 + 0.086Murder + -0.723manslaughter + -0.034suicide + 0.001g/harm & wounding + 0.003assault + -0.095child stealing + -0.805slave dealing + -0.028rape/indicent assault + -0.049unnatural offences

attempted suicide = 99.564 + -0.085Murder + -0.101manslaughter + -0.105suicide + 0g/harm & wounding + 0.001assault + -0.062child stealing + 1.017slave dealing + 0.045rape/indicent assault + 0.011unnatural offences

kidnapping = 285.161 + -0.003Murder + -1.034manslaughter + -0.128suicide + 0.013g/harm & wounding + 0assault + 0.394child stealing + 0.576slave dealing + -0.065rape/indicent assault + 0.011unnatural offences

other offences = 1788.399 + -3.67Murder + 14.978manslaughter + -54.192suicide + -0.319g/harm & wounding + 0.268assault + -53.678child stealing + - 27.956slave dealing + 14.514rape/indicent assault + 6.771unnatural offences.

The correlation coefficients are:

Table 5: Correlation coefficients of derived equations

Variable	Correlation coefficient
Attempted murder	0.8074652
Attempted suicide	0.7402702
Kidnapping	0.6542171
Other offences	0.8485281

Solving the equations yielded the results in table 6 below.

Table 6: Replacement of missing values with regression analysis

year	Att murder	Att suicide	kid	Other offences
1980		62	313	
1981		74	331	
1982	133	60	170	
1983		51	257	
1987				26316
1988				-5139

After replacement of missing values with values derived from each technique, the figures were summed to obtain summary of "offences against persons" for each technique. Table 7 shows "offences against persons" derived from each technique – note that for "replacement with mean", "replacement with nearest neighbor" (NN) and "replacement with regression analysis" (M, Reg), all figures are the same except for 1980 – 1983 and 1987 – 1988 (the years with missing fields). Note also that because "attempted murder", "attempted suicide", "kidnapping" and "other offences" (columns with missing fields) have been removed in "Discard columns with missing values", all values in "Discard columns with missing values" are lower than actual recorded values.

Year	Mean	NN	M. Reg	discard columns
1980	56341	56292	56260	52683
1981	64802	64753	64751	55403
1982	78673	78573	78345	76729
1983	91995	91946	91847	72638
1984	86254	86254	86254	67913
1985	80966	80966	80966	65628
1986	120309	120309	120309	71526
1987	86943	118866	97016	70024
1988	98879	130802	77497	81948
1989	98862	98862	98862	73209
1990	96358	96358	96358	70721
1991	94416	94416	94416	70549
1992	96760	96760	96760	74282
1993	93772	93772	93772	72924
1994	90278	90278	90278	69153
1995	86782	86782	86782	67699
1996	92621	92621	92621	74942
1997	80935	80935	80935	62895

1998	77601	77601	77601	60019
1999	68718	68718	68718	54659
2000	43641	43641	43641	31184
2001	76004	76004	76004	58026
2002	66732	66732	66732	51624
2003	67458	67458	67458	51740
2004	65537	65537	65537	53254
2005	71796	71796	71796	61362
2006	74585	74585	74585	63622
2007	34828	34828	34828	25657
2008	35115	35115	35115	24877

Figure 2 below is a 3D plot of the dataset produced by each technique.

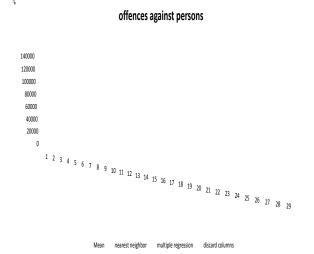


Figure 2: Offences against persons with missing values replaced

III. EXPERIMENTATION

Neural networks are suitable for prediction, forecasting, categorization and classification problems [5]. A Multi Layer Perceptron (MLP) is a feed forward neural network with one or more hidden layers. One of the main learning tasks for the multilayer perceptron is function regression. The function regression task can be regarded as the problem of approximating a function from an input-target dataset [6]. The targets are a specification of what the output response to the inputs should be. Learning proceeds by presenting an input pattern to the network. The network then propagates the input pattern from layer to layer until the output pattern is generated by the output layer. If this pattern is different from the desired output, an error is calculated and then propagated backwards through the network from the output layer to the input layer.

The dataset was partitioned into two; test data comprising of records from 1980 - 2003 and holdout sample data (for validation) comprising records from 2004 - 2008. A Multi Layer Perceptron was built with the input data (records from 1980 - 2003 that contain the "offences against persons" filled in values) and used to predict the holdout sample data ("offences against persons" 2004 - 2008). Each technique was run five times with 10000 epochs. To ensure consistency of results, the same set of small uniformly distributed random numbers were used to set all the weights and threshold levels of the network [7] for each run. The predictions per run of each technique are displayed in tables 8,9,10,11, and 12 below:

Year	Mean	NN	M. Reg	Discard columns
2004	65180	67115	59317	50801
2005	78506	69659	78767	57583
2006	68839	68578	72982	54890
2007	74393	69043	69208	56486
2008	76557	69300	80530	57926

Table 8: Run 1 – 10000 Epochs

Table 9: Run 2 – 10000 Epochs

Year	Mean	NN	M. Reg	Discard columns
2004	65361	67473	59978	51146
2005	78556	70352	78680	57437
2006	68978	68922	72906	54946
2007	74564	69415	69462	56421
2008	76669	69584	80003	57684

Table 10: Run 3 - 10000 Epochs

Year	Mean	NN	M. Reg	Discard columns
2004	65409	66815	60247	51199
2005	78703	69743	78453	57696
2006	69054	68066	72882	55156
2007	74702	68350	69620	56768
2008	76856	68461	79744	58152

	Table 11: Ru	n 4 – 10000 Epochs
oon	NINI	м

Year	Mean	NN	М.	Discard
			Reg	columns
2004	65316	67080	59667	51258
2005	78503	69784	78211	57630
2006	68981	68134	72730	55307
2007	74537	68443	69083	56953
2008	76689	68463	79526	58367

Year	Mean	NN	M. Reg	Discard columns
2004	65370	67007	59698	51149
2005	78680	69664	78448	58064
2006	69168	68011	72941	55531
2007	74786	68268	69229	57285
2008	77030	68259	79844	58864

Validation was carried out by computing the correlation coefficient of each run. In this case, the variables are the actual values of "offences against persons" 2004 - 2008 (table 13 below) and predicted values of "offences against persons" 2004 - 2008 (tables 8,9,10,11 and 12).

Table 13: offences against persons 2004 - 2008

Year	Offences against persons
2004	65537
2005	71796
2006	74585
2007	34828
2008	35115

Table 14 below is the summary of correlation coefficients.

Table 14: Summary of Correlation coefficients

Run	Mean	NN	M. Reg	Discard columns
1	-0.3828	-0.2818	-0.1712	-0.4128
2	-0.3881	-0.1879	-0.1659	-0.4075
3	-0.3909	-0.0013	-0.1697	-0.4285
4	-0.3902	0.0279	-0.1593	-0.4535
5	-0.3985	0.0729	-0.1606	-0.4510

IV. ANALYSIS

As stated earlier, the values in "Discard columns with missing values" dataset are different (lower in all cases) from the actual observed values in the Police dataset. Therefore, any analysis involving this dataset is unrelated and irrelevant to "offences against persons". The higher than others correlation coefficient achieved by this technique (-0.4535 in run 4) must be disregarded. The fact that most values in the holdout sample data are low made "Discard columns with missing values" to produce a spuriously good correlation coefficient. The "Replacement with nearest neighbor" technique produced instances of positive and negative correlation i.e., run 1 - 3produced negative correlations while run 4 and 5 produced positive correlations. Besides the fact that the correlation coefficients are low (-0.2818 in run 1), the shift from negative to positive correlation implies that the technique is unstable and predictions made (with this dataset) cannot be relied upon. The "Replacement with mean" technique produced correlation coefficients ranging from -0.383 (run 1) to -0.399 (run 5). Though this cannot be considered to be an indication of a strong negative correlation, it was consistent in five runs. The maximum variation it produced in correlation coefficients calculated for the five runs was 0.016.

The "Replacement with regression analysis" technique yielded a low correlation ranging from -0.159 (run 4) to -0.171 (run 1). But like the "Replacement of missing values with mean" technique, it was consistent in that all runs produced a negative correlation. Table 5 shows the correlation coefficients of the equations produced by "Replacement of missing values with regression analysis". These correlation coefficients can be increased by deriving equations that more aptly fit the dataset. Non linear regression can be used to derive such equations.

V. CONCLUSION

This work has shown that when missing values are encountered in a dataset, the values can be handled (filled) and that the data mining process need not be aborted. It has also shown that "Replacement of missing values with mean" and "Replacement of missing values with regression analysis" can be used to fill missing values in a dataset.

VI. REFERENCES

 The Annual Report of The Nigeria Police Force (1980 -2009). Published by "F" Department and printed by Police Printing Press, FHQ Annex Ikeja, Lagos

- [2]. The Annual Abstract of Statistics (1980 2009). Published by The NATIONAL BUREAU OF STATISTICS, Abuja, Nigeria
- [3]. CLEEN FOUNDATION Nigeria (2009). official crime statistics. http://www.cleen.org/officialcrimestatistic.html (Retrieved February, 2010)
- [4]. Pyle, D. (1999). Data preparation for data mining Morgan Kaufmann Publishers, USA pp. 275 297
- [5]. Swingler, K., (1996). Applying neural networks; a practical guide. San Francisco; Morgan Kaufman
- [6]. Bishop, C., (1995). Neural Networks for Pattern Recognition. Oxford University Press.
- [7]. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd edition. Upper Saddle River, NJ: Prentice– Hall.