
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 43

ISSN No. 0976-5697

Load Balancing Techniques for Web Proxy Cache Clusters

Najat O. Alsaiari*
Department of Computer Sciences

King Abdulaziz University
Jeddah, Saudi Arabia
nalsaiari@kau.edu.sa

Ayman G. Fayoumi
Department of Information System

King Abdulaziz University
Jeddah, Saudi Arabia
afayoumi@kau.edu.sa

Abstract: Web caching is a crucial technology in Internet because it represents an effective means for reducing bandwidth demands, improving Web
server availability and reducing network latencies. Web cache cluster which is a potent solution to enhance Web cache system’s capability still have
limited capacity and cannot handle tremendously high workload. How to maximize resource utilization and system capability is an all important
problem in Web cache cluster and load balancing is an effective method to solve this problem. The aim of this paper is to present performance
analysis of various loading balance techniques used in traditional Web cache proxy systems based on identified qualitative parameters, considering
two typical load balancing techniques static and dynamic. The analysis indicates that i) static and dynamic both types of algorithm can have
advancements as well as weaknesses over each other, ii) dynamic algorithms are always considered better than static algorithms due to the frequent
load state of cache cluster and iii) both types of algorithm have a common issue related to resource utilization i.e. existing load balanced Web proxy
systems are lack of flexibility in resource provision.

Keywords: Proxy Cluster, Loading Balance, Web Caching, Resource Utilization.

I. INTRODUCTION

In the recent years, the World Wide Web (WWW)
application provides a simple access to a wide range of
information and services. As a result, the amount of traffic
over the Internet has experienced tremendous growth, and
obtaining ease and high speed of browsing Web and loading
files through the Internet is often a high requirement among
clients. Unfortunately, clients often experience delays when
accessing the Internet due to hardware limitations, or low
quality service management systems [1]. In order to satisfy
clients' expectations, the Internet services delay needs to be
bounded by a small value and thus caching Web documents
is an effective solution of reducing this delay. Caching
involves storing copies of Web pages on a local disk. If the
same pages are requested at a later time, and the cached copy
is still valid, it will be sent directly instead of contacting the
origin server again.

The main purpose of a Web proxy server is to save net-
work resources and to reduce user-perceived network latency
by filtering and caching Web traffic [1]. Proxy servers were
originally used in allowing internet access to users who were
in the same firewall. During those times, companies would
use a special type of HTTP servers called “proxy” on their
firewall machines for security reasons [1].

This proxy server typically configures those requests that
are in a firewall by forwarding them to the remote servers,
receiving the responses, and sending them back to the clients.
As a result, this was seen as an opportunity to cache
documents since clients that are within the same firewall
typically share the same proxy servers and thus likely share
similar interests. The documents that they would request
probably would be the same and it would be easy to browse
them within shorter periods. Cooperative proxy system, such
as web proxy cache cluster, is a potent solution to enhance

web proxy cache system’s capacity. Since the 1990’s, studies
on cooperative proxy system become more and more
intensive. Researches of cooperative proxy system are focus
on proxy cooperation protocol and load balancing strategy.
Proxy cooperation is usually implemented through proxy
cooperation protocol, which indicates how the proxies share
the local cache with each other (e.g. ICP [2], Summary
Cache [3] and CARP [4]).

Loading balancing actually means distributing the traffic
evenly across the network along maintaining the response
time. Load balancing can be achieved by many ways out of
which the ways which will be discussed in this paper are
Time Round Robin, Hashing based algorithm, Least Loaded,
Threshold algorithm, Central Queue algorithm and Local
Queue algorithm.

Section 2 identifies the benefits of Web caching. Section
3 describes the web caching architectures. In section 4, we
focus in common loading balance techniques used in proxy
cache clusters. Section 5 gives the differentiating parameters
to analyze loading balance algorithms. Section 6 concludes
the paper with some final remarks and identifies the future
research directions.

II. THE APPEAL OF WEB CACHING

The potential benefits of Web caching are multifold [5].
Deploying caches close to clients can reduce the user
perceived network performance and improve their Web
experience in two ways. First, when serving users locally,
caches hide network latencies. Second, network outages will
be hidden to users of a caching system since local cache can
be leveraged regardless of network availability and thus
making the network appear to be more reliable. In other
hand, deploying caches close to content providers (e.g. the
reverse proxy server approach) can improve the availability

Najat O. Alsaiari et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,43-48

© 2010, IJARCS All Rights Reserved 44

and scalability of Web server under existing or anticipated
demand. In addition, caching can reduce amount of Web
traffic. For enterprises that pay the ISPs for wide area
network bandwidth based on the amount of network traffic,
reduced traffic means lowered costs.

III. WEB CACHING ARCHITECTURES

A. Single Proxy Cache:
To reduce the required bandwidth over costly dedicated

Internet connections, proxy caches are normally situated
close to network gateways. Figure1 shows a configuration of
a standalone proxy.

Figure 1. A Single proxy Cache

There are two disadvantages to the design shown above.
One is that the cache signifies a single network failure point.
The other is that no more caches can be dynamically added
if there is need to. Fact is that the single proxy caches have a
limited capacity making it a must to replace objects in order
to create room for other new objects that may need to be put
in the cache. This problem gave rise to proposals for policies
on cache replacement. The policies were aimed at using the
limited storage space in order to bring the highest caching
results. Cache replacement policies are well presented in [6].
One of these policies is the least frequently used (LFU) and
the least recently used (LRU) which were among the earliest
to be proposed in the disk caching system and computer
memory framework. LRU displaces those object that were
least used recently if storage space is required while LFU
displaces those objects that were least used frequently. An-
other policy is known as “size policy” which was designed
to be used by Web proxy caches to evict the biggest object
in the cache if storage space is required. The eviction
decisions are done by using a cost function which considers
a number of relevant factors. These factors include size,
retrieval latency of documents, and reference popularity. In
general, the cache replacement algorithms reviewed in [6],
[7] and [8] usually maximize the cache hit ratio (the number
of times that objects in the cache are referenced) by
attempting to cache the data items which are most likely to
be referenced in the near future. Unfortunately, it is very
difficult, if not impossible, to predict the future user needs
[7].

a. Optimized Disk I/O:
The constraints of proxy’s computational resources (e.g.,

storage and CPU cycles) are still a major drawback of single
proxy system. Thus, many systems, especially those that are
commercial, have spent substantial time tuning their disk
I/O, treating the object cache as one does a high

performance database. Markatos et al. [9] has studied the
disk I/O over-head of traditional world-wide web proxy, and
proposed a set of techniques aimed at reorganizing the file
system layout to improve performance in Squid system. To
avoid CPU or disk arm overhead in Active cache system
[10], the proxy simply refuses to serve the hit cache request
that consuming its local resources and redirects it to the
original server. In [11], the Web server plays a role in
reducing proxy resources overhead. The former technique
weights the performance tradeoffs and determines whether
migration of a data file to a proxy add burden to the proxy or
not.

Other disk I/O optimizations include using in-memory
data structures and improving the spatial locality of objects
to avoid disk I/O altogether [12]. This technique exploits in-
memory data structures (i.e., hash tables) to summarize the
contents of a cache so it can be used to quickly determine if
an object has been cached; if querying the data structures
finds that the object has indeed been cached, disk operations
can begin to actually locate the object (if not already in
RAM). Otherwise, costly disk access can be avoided
altogether and the object can be retrieved from the
originating server.

B. Cooperative Proxy Cache:
Increase in demand of internet services and expansion of

internet in recent years made it very hard for a single proxy
server with resource constraints to operate and serve the
needs of clients. Therefore, many studies suggest
cooperation among the caching proxies to address these
scalability issues associated with single caches [13, 14, 15]

Cache networks bring about several advantages [5]. First,
through sharing caches among a large number of users,
more efficient utilization of caching resources can be
realized when compared with a single cache approach.
Second, caching networks provide a natural solution to
applications that involve serving a large, geographically
dispersed user population in support of their diverse Web
requests, since multiple caches can be strategically located
between the users and original Web servers. Third, caches
networks help improve the overall performance of the
caching system by balancing loads between proxies.
Furthermore, they improve the network fault tolerance and
robustness by removing the single point of failure. Though
web caching offers much hope for better performance and
improved capability, there remain a number of ongoing
issues such as replacement strategies and cache consistency.
These two issues are out of scope in this paper; rather, we
mainly focus in a third issue which is related to the
coordination among participating caches. Since loading
balance among participating caches has to be carefully
designed in order to optimize the use of resources and
maximize throughput as well as minimize response time.

IV. LOADING BALANCE IN COOPERATIVE PROXY
SYSTEM

Load balancing is a computer networking methodology to
distribute workload across multiple computers or a computer

Najat O. Alsaiari et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,43-48

© 2010, IJARCS All Rights Reserved 45

cluster, network links, central processing units, disk drives,
or other resources, to achieve optimal resource utilization,
maximize throughput, minimize response time, and avoid
overload.

Load imbalance is the primary obstacle for maximizing
performance of cooperative proxy system. Load imbalance in
cooperative proxy system is caused by unbalanced re-quests
to objects in different proxies’ cache. The existence of hot
spot worsens the imbalance. In order to overcome the load
imbalance, enhance system efficiency, many load balancing
strategies are proposed. Kun-Lung Wu [16] presented
adaptable controlled replication (ACR) to reduce load
imbalance. In ACR, a two level LRU stack is implemented.
With redundant hot spot, the imbalance in proxy system
could be alleviated. But ACR can only relieve the imbalance
caused by hot spot.

a. Loading Balance Algorithms:
Load balancing algorithms can be broken down into

dynamic and static load balancing techniques [17]. These
two load balancing techniques are discussed below.

Static Load Balancing. The performance of the proxies
determined at the beginning of execution. Then depending
upon their performance the work load is distributed in the
start by the master proxy. The slave proxies calculate their
allocated work and submit their result to the master. A task is
always executed on the proxy to whom it is assigned. This
type of algorithm has a benefit since it brings about ease of
implementation and overhead reduction. This is because
monitoring the performance statistic of workstations is not
needed. However, a general disadvantage of all static
schemes is that the final selection of a proxy for task
allocation is made when the task is created and cannot be
changed during process execution to make changes in the
system load (i.e. non primitive scheme).

Dynamic Load Balancing. This kind of load balancing
technique adjusts the distribution of tasks based on run time
by using recent or current load information whenever they
make a choice on distribution of a task. Unlike static
algorithms, dynamic algorithms allocate tasks dynamically
when one of the proxies becomes under loaded. As a result,
dynamic load balancing algorithms can provide a significant
improvement in performance over static algorithms. How-
ever, this improvement carries an additional cost of gathering
and maintaining load information.

A. Time Round Robin
This algorithm determines the destination proxy server

based on the time that the user sends the request. It
distributes requests evenly to all proxies. With equal
workload round robin algorithm is expected to work well. In
general, Time Round Robin is a stateless non adaptive
algorithm which does not consider the information of cached
objects at each proxy.

B. Hashing Based Algorithm:
A proxy server is selected based on a hash value

computed from the requested URL (e.g. SuperProxy [18]).
When a client or a proxy needs to locate a copy of the
requested Web object, it applies this shared hash function to

the requested URL and then contacts the proxies identified
by the returned hash value. The hash function-based method
utilizes cache space efficiently because no multiple copies of
the Web objects need to be maintained. The main
disadvantage of this method is the need for all clients and
proxies to use the same global hash function. The
coordination overhead is nontrivial when this global function
needs to be updated because of the changes in the cache
network. Moreover, one requested URL may get various
kinds of objects returned including images, banners, or flash
video, and they all have different sizes. Thus, at any moment,
it is possible that all proxy servers are in use or only one
server is used. Thus, this technique does not guarantee the
load balancing among proxy servers.

C. Threshold Algorithm:
The According to this algorithm [20], the tasks are

assigned immediately upon creation to proxies. Proxies for
new tasks are selected locally without sending remote
messages. Each proxy keeps a private copy of the system’s
load. The load of a proxy can characterize by one of the three
levels: underloaded, medium and overloaded. Two threshold
parameters tender and topper can be used to describe these
levels.
Under loaded - load < tender
Medium - tender ≤ load ≤ topper
Overloaded - load > topper

Initially, all the proxies are considered to be under
loaded. When the load state of a proxy exceeds a load level
limit, then it sends messages regarding the new load state to
all remote proxies, regularly updating them as to the actual
load state of the entire system. If the local state is not
overloaded then the task is allocated locally. Otherwise, a
remote under loaded proxy is selected, and if no such host
exists, the task is also allocated locally. Thresholds algorithm
have low inter process communication and a large number of
local task allocations. The later decreases the overhead of
remote process allocations and the overhead of remote
memory accesses, which leads to improvement in
performance. A disadvantage of the algorithm is that all tasks
are allocated locally when all remote proxies are overloaded.
A load on one overloaded proxy can be much higher than on
other overloaded proxies, causing significant disturbance in
load balancing, and increasing the execution time of an
application.

D. Lowest Load Algorithm [19]:
It determines the destination proxy server based on the

current workload of each proxy server. The current workload
is determined from the number of log records created by
Squid on each proxy server where each log record represents
one object request. Unlike Time Round Robin and Hashing
based algorithms, Least Loaded takes into account the
number of requests handled by each proxy and the requested
sizes that reflect the cache size on Squid and then send the
request to the target proxy server that currently have the
lowest workload. In fact, using static weight to integrate load
information can not reflect system load state precisely. Thus,
in Web cache proxy system which has dynamic task resource

Najat O. Alsaiari et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,43-48

© 2010, IJARCS All Rights Reserved 46

demand feature this technique is inefficient [17]. Moreover,
the response time of a request can be affected by network
delay since the location of each proxy was not taken into
account when assigning a request to a proxy server located
far away.

E. Central Queue Algorithm:
Central Queue Algorithm [21] works on the principle of

dynamic distribution. It stores new activities and unfulfilled
requests as a cyclic FIFO queue on the master server. Each
new activity arriving at the queue manager is inserted into
the queue. Then, whenever a request for an activity is
received by the queue manager, it removes the first activity
from the queue and sends it to the requester. If there are no
ready activities in the queue, the request is buffered, until a
new activity is available. If a new activity arrives at the
queue manager while there are unanswered requests in the
queue, the first such request is removed from the queue and
the new activity is assigned to it. When a slave proxy load
falls under the threshold, the local load manager sends a
request for a new activity to the central load manager. The
central load manager answers the request immediately if a
ready activity is found in the process request queue, or
queues the request until a new activity arrives.

F. Local Queue Algorithm:
Main feature of this algorithm [21] is dynamic process

migration support. The basic idea of the local queue
algorithm is static allocation of all new processes with
process migration initiated by a proxy when its load falls
under threshold limit; the parameter defines the minimal
number of ready processes the load manager attempts to
provide on each proxy. Initially, new processes created on
the master proxy are allocated on all under loaded slave
proxies. The number of parallel activities created by the first
parallel construct on the master proxy is usually sufficient
for allocation on all remote proxies. From then on, all the
processes created on the master proxy and all other proxies
are allocated locally. When the proxy gets under loaded, the
local load manager attempts to get several processes from
remote proxies. It randomly sends requests with the number
of local ready processes to remote load managers. When a
load manager receives such a request, it compares the local
number of ready processes with the received number. If the
former is greater than the latter, then some of the running
processes are transferred to the requester and an affirmative
confirmation with the number of processes transferred is
returned.

V. IDENTIFICATION OF DIFFERENTIATING PA-
RAMETERS

The performance of various load balancing algorithms is
measured by the following parameters.

A. Nature of Loading Balancing Techniques:
Static load balancing assigns load to nodes

probabilistically or deterministically without consideration
of runtime events. It is generally impossible to make
predictions of arrival times of loads and processing times

required for future loads. On the other hand, in a dynamic
load balancing the load distribution is made during run-time
based on current processing rates and network condition.
However, static algorithms only work well when there is not
much variation in the load on the workstations. For Cache
proxy system which is having significant variations of loads
using dynamic load technique is more sufficient than static
techniques [17].

B. Overload Rejection:
If Load Balancing is not possible additional overload

rejection measures are needed. When the overload situation
ends then first the overload rejection measures are stopped.
After a short guard period Load Balancing is also closed
down.

C. Cooperation:
This parameter gives that whether proxies share

information between them in making the process allocation
decision other are not during execution. What this parameter
defines is the extent of independence that each proxy has in
concluding that how should it can use its own resources. In
the cooperative situation all proxies have the accountability
to carry out its own portion of the scheduling task, but all
proxies work together to achieve a goal of better efficiency.
In the non-cooperative individual proxies act as independent
entities and arrive at decisions about the use of their
resources without any effect of their decision on the rest of
the system.

D. Forecasting Accuracy:
Forecasting is the degree of conformity of calculated

results to its actual value that will be generated after
execution. Dynamic algorithms using single resource load
information does not reflect the system load state precisely,
rather study shows that correlation coefficient between
resource load information and system performance index
represents the extent of resource’s influence on system
performance. In general, the static algorithms provide more
accuracy than of dynamic algorithms as in former most
assumptions are made during compile time and in later this
is done during execution.

E. Centralized or Decentralized
Centralized schemes store global information at a

designated node. All sender or receiver nodes access the
designated node to calculate the amount of load-transfers
and also to check that tasks are to be sent to or received
from. In a distributed load balancing, every node executes
balancing separately. The idle nodes can obtain load during
runtime from a shared global queue of processes.

F. Process Migration:
Process migration parameter provides when a system

decides to export a process. It decides whether to create it
locally or create it on a remote processing element. The
algorithm is capable to decide that it should make changes
of load distribution during execution of process or not.

Najat O. Alsaiari et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,43-48

© 2010, IJARCS All Rights Reserved 47

G. Resource Utilization:
Resource utilization include automatic load balancing A

distributed system may have unexpected number of
processes that demand more processing power. If the
algorithm is capable to utilize resources, they can be moved
to under loaded proxies more efficiently.

The comparison of various load balancing algorithms on
behalf of the above parameters is shown in Table 1.

VI. CONCLUSION

In this paper, we review various loading balance
techniques used in Web cache proxy clusters. The
comparison table shows static algorithms are more accurate
and stable in compare to dynamic and it is also ease to
predict the behavior of static. In other hand and due to the

frequent load state of cache cluster, dynamic algorithms are
always considered better than static algorithms. However,
there is a common issue in the reviewed load balancing
techniques related to resource utilization. As can be
provisioned there is always a trade-off between improving
service quality and enhancing resource utilization in Web
proxy cache cluster. When system load is low, it will cause
resource wasting and when system load becomes high, it will
lower service quality. Thus, utilize the resource efficiency
with QoS support is an open issue and needs to be addressed
in order to achieve outstanding performance, higher resource
efficiency and lower system cost.

Table I. Parametric Comparison of Load balancing Techniques

Parameters time round
robin

Hashing based
algorithm

threshold
algorithm

lowest Load Central queue local queue

Dynamic/static S S S Dy Dy Dy
overload rejection No No No No Yes Yes

cooperative No No Yes No Yes Yes
forecasting accuracy More More More Less Less Less

centralized/decentralized D D D C C D
process migration No No No No No Yes

resource utilization Less Less Less Less Less Less

VII. ACKNOWLEDGMENT

This paper contains the results and findings of a research
project that is funded by King Abdulaziz City for Science and
Technology (KACST), Grant No: T-T-12-0938.

VIII. REFERENCES

[1] J. Wang. A survey of web caching schemes for the internet.
ACM Computer Communication Review, 29(5):36–46, Oct.
1999.

[2] D. Wessels, K. Claffy. “ICP and the Squid Web Cache”,IEEE
Journal on Selected Areas in Communications, Vol.16, No.3,
1998, pp 345-357.

[3] L. Fan, P. Cao, J. Almeida, “Summary Cache: A Scalable
Wide-Area Web Cache sharing Protocol”, IEEE/ACM
TRANSACTIONS ON NETWORKING, Vol.8, No.3, 2000,
pp: 281- 293.

[4] Cache Array Routing Protocol,
http://technet.microsoft.com/en-us/cc723281.aspx

[5] D. Zeng; F.Y. Wang; Mingkuan Liu; , "Efficient web content
delivery using proxy caching techniques," Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on , vol.34, no.3, pp.270-280, Aug. 2004.

[6] K.-Y. Wong; "Web cache replacement policies: a pragmatic
approach," Network, IEEE , vol.20, no.1, pp.28-34, Jan.-Feb.
2006.

[7] M. Arlitt, R. Friedrich, and T.Jin, “Performance Evaluation of
Web Proxy Cache Replacement Policies,” Performance
Evaluation, 39(1-4):149–164, February 2000.”

[8] J. Xu; Q. Hu, W.-C. Lee, D. L. Lee; "An optimal cache
replacement policy for wireless data dissemination under
cache consistency," Parallel Processing, International
Conference on, 2001. , vol., no., pp. 267- 274, 3-7 Sept. 2001.

[9] E.P. Markatos; D.N. Pnevmatikatos; M. D. Flouris; M.G.H
Katevenis; "Web-conscious storage management for Web
proxies," Networking, IEEE/ACM Transactions on , vol.10,
no.6, pp. 735- 748, Dec 2002.

[10] P. Cao, J. Zhang, and K. Beach. Active cache: Caching
dynamic contents on the web. Proc of IFIP Intl Conf on
Distributed Systems Platforms and Open Distributed
Processing, 1998.

[11] W. Hao, Q.K. Ma, I. L. Yen, I. Chen; A Weblet environment
to facilitate proxy caching of web. In: Proceedings of Parallel
& Distributed Computing and Systems, Marina del Rey,
California, November, 797–802 (2003).

[12] G. Tomlinson, D. Major, and R. Lee. High-capacity internet
middleware: Internet caching system architectural overview.
Second Workshop on Internet Server Performance, 1999.

[13] Y. Wang; G. Y. Du; T. S. Huang; Y. Wang; "A load
balancing model for web cache proxy based on ant colony
behavior," Machine Learning and Cybernetics, 2008
International Conference on , vol.4, no., pp.2192-2197, 12-15
July 2008.

[14] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd,
and V. Jacobson, “Adaptive web caching: Toward a new
global caching architecture,” in Comput. Networks ISDN
Syst., vol. 30, Nov. 1998, pp. 2169–2177.

[15] Z. Duan, Z. Gu, X. Ding; "WPCC: A novel web proxy cache
cluster," Advanced Communication Technology, 2009.

Najat O. Alsaiari et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,43-48

© 2010, IJARCS All Rights Reserved 48

ICACT 2009. 11th International Conference on , vol.03, no.,
pp.2205-2208.

[16] K. L. Wu, P. S. Yu, “Load Balancing and Hot Spot Relief for
Hash Routing among a Collection of Proxy Caches”,
Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, IEEE, Austin, Texas, USA ,
1999, pp. 536 -543.

[17] Z. Duan; Z. Gu; , "Dynamic Load Balancing in Web Cache
Cluster," Grid and Cooperative Computing, 2008. GCC '08.
Seventh International Conference on , vol., no., pp.147-150,
24-26 Oct. 2008.

[18] R.B. Bunt, D.L. Eager, G.M. Oster, and C.L. Williamson,
“Achieving Load Balance and Effective Caching in Clustered
Web Servers”, Proceedings of the 4th International Web

Caching Workshop, San Diego, California, USA, pp.159-169,
April 1999.

[19] S. Ngamsuriyaroj; P. Rattidham, P; I. Rassameeroj; P.
Wongbuchasin,; N. Aramkul; S. Rungmano; "Performance
Evaluation of Load Balanced Web Proxies," Advanced
Information Networking and Applications (WAINA), 2011
IEEE Workshops of International Conference on , vol., no.,
pp.746-750, 22-25 March 2011.

[20] S. Sandeep, S. Sarabjit and S. Meenakshi, Performance
Analysis of Load Balancing Algorithms, World Academy of
Science, Engineering and Technology, 2008.

[21] W. Leinberger; G. Karypis; V. Kumar; R. Biswas; "Load
balancing across near-homogeneous multi-resource servers,"
Heterogeneous Computing Workshop, 2000. (HCW 2000)
Proceedings. 9th , vol., no., pp.60-71, 2000.

	INTRODUCTION
	THE APPEAL OF WEB CACHING
	The potential benefits of Web caching are multifold [5]. Deploying caches close to clients can reduce the user perceived network performance and improve their Web experience in two ways. First, when serving users locally, caches hide network latencies...

	WEB CACHING ARCHITECTURES
	Single Proxy Cache:
	Cooperative Proxy Cache:

	LOADING BALANCE IN COOPERATIVE PROXY SYSTEM
	Dynamic Load Balancing. This kind of load balancing technique adjusts the distribution of tasks based on run time by using recent or current load information whenever they make a choice on distribution of a task. Unlike static algorithms, dynamic algo...
	This algorithm determines the destination proxy server based on the time that the user sends the request. It distributes requests evenly to all proxies. With equal workload round robin algorithm is expected to work well. In general, Time Round Robin i...
	Hashing Based Algorithm:
	Lowest Load Algorithm [19]:
	It determines the destination proxy server based on the current workload of each proxy server. The current workload is determined from the number of log records created by Squid on each proxy server where each log record represents one object request....
	Central Queue Algorithm:
	Central Queue Algorithm [21] works on the principle of dynamic distribution. It stores new activities and unfulfilled requests as a cyclic FIFO queue on the master server. Each new activity arriving at the queue manager is inserted into the queue. The...
	Local Queue Algorithm:
	Main feature of this algorithm [21] is dynamic process migration support. The basic idea of the local queue algorithm is static allocation of all new processes with process migration initiated by a proxy when its load falls under threshold limit; the ...

	IDENTIFICATION OF DIFFERENTIATING PA-RAMETERS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

