
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 17

ISSN No. 0976-5697

A Novel Architecture of Heterogeneity based Dynamic Load Balancing for DHT Based
P2P System

M.Buvana*
Associate Professor Dept. of CSE,

PSNA College of Engg. and Tech., Dindigul, Tamilnadu.
 Dindigul, Tamilnadu

bhuvana_beula@yahoo.co.in

K.Muthumayil

Associate Professor, Dept. of IT.
PSNA College of Engg. and Tech., Dindigul, Tamilnadu.

Dindigul, Tamilnadu
muthumayil@yahoo.com

Abstract: Distributed Dynamic load balancing (DDLB) is an important system function destined to distribute workload among available
processors to improve throughput and / or execution times of parallel computer . Instead of balancing the load in cluster by process migration or
by moving an entire process to a less loaded computer, we make an attempt to balance load by splitting processes into separate jobs and
then balance them to nodes. Many solutions have been proposed to tackle the load balancing issue in DHT-based P2P systems. However, all these
solutions either ignore the heterogeneity nature of the system, or reassign loads among nodes without considering heterogeneity relationships, or
both. In this paper, we present an efficient, Heterogeneity-aware load balancing scheme by using the concept of virtual servers. Proximity
information is used to guide virtual server reassignments such that virtual servers are reassigned and transferred between physically close heavily
loaded nodes and lightly loaded nodes, thereby minimizing the load movement cost and allowing load balancing to perform efficiently

Keywords: Dynamic load balancing, Heterogeneity-aware, load balancing, peer-to-peer, virtual server

I. INTRODUCTION

Load balancing is an efficient strategy to improve
throughput or speed up execution of the set of jobs while
maintaining high processor utilization. Basically Load
balancing is the allocation of the workload among a set of
co-operating nodes. The demand for high performance
computing continues to increase everyday. Load balancing
[1],[2] strategies fall broadly into either one of two classes
static or dynamic. A multi-computer system with static load
balancing[3],[4],[5] distributes tasks across nodes before
execution using a priori known task information and the
load distribution remains unchanged at run time. A multi-
computer system with Dynamic Load balancing
(DLB)[6],[7],[8] uses no priori task information and
satisfies changing requirements by making task distribution
decisions during run-time. Two classes of solutions have
been proposed to tackle the load balancing issue in DHT-
based P2P systems. Solutions in the first class use the
concept of virtual servers [9],[10]. Each physical node
instantiates one or more virtual servers with random IDs
those act as peers in the DHT. In the case of a homogeneous
system, maintaining Θ(log n) virtual servers per physical
node reduces the load imbalance to a constant factor. To
handle heterogeneity, each node picks a number of virtual
servers proportional to its capacity. Unfortunately, virtual
servers incur a significant cost: a node with k virtual servers
must maintain k sets of overlay links. Typically k = Θ(log
n), which leads to an asymptotic increase in overhead.

The second class of solutions uses just a single ID per
node [11],[12]. However, all such solutions must reassign
IDs to maintain the load balance as nodes arrive and depart
the system [13]. This can result in a high overhead because
it involves transferring objects and updating overlay links.

However, existing load balancing approaches have some

limitations in our opinion. They either ignore the
heterogeneity of node capabilities, or transfer loads between
nodes without considering heterogeneity relationships, or
both. In this paper, we present heterogeneity - aware load
balancing scheme by using the concept of virtual servers
previously proposed in [14]. The goals of our scheme are
not only to ensure fair load distribution over nodes
proportional to their capacities[15], but also to minimize the
load-balancing cost (e.g., bandwidth consumption due to
load movement) by transferring virtual servers (or loads)
between heavily loaded nodes and lightly loaded nodes in a
heterogeneity-aware fashion[16],[17]. There are two main
advantages of Heterogeneity-aware load balancing scheme.
First, from the system perspective, a load balancing scheme
bearing network heterogeneity in mind can reduce the
bandwidth consumption (e.g., bisection backbone
bandwidth) [18],[19],[20] dedicated to load movement.
Second, it can avoid transferring loads across high-latency
wide area links, thereby enabling fast convergence on load
balance and quick response to load imbalance.

We operate under the uniform load assumption that the
load of each node is proportional to the size of the ID space
it owns. This is reasonable when all objects generate similar
load (e.g., have the same size), the object IDs are randomly
chosen (e.g., are computed as a hash of the object’s content),
and the number of objects is large compared to the number
of nodes (e.g., (n log n)). Alternately, we can
unconditionally balance the expected load over uniform-
random choices of object IDs.

Our main contributions are the following.
a. Relying on a self-organized, fully distributed k-ary

tree structure constructed on top of a DHT, load
balance is achieved by aligning those two skews in

M.Buvana et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,17-21

© 2010, IJARCS All Rights Reserved 18

load distribution and node capacity inherent in P2P
systems—that has higher capacity nodes carry
more loads.

b. Heterogeneity information is used to guide virtual
server reassignments such that virtual servers are
reassigned and transferred between physically close
heavily loaded nodes and lightly loaded nodes,
thereby minimizing the load movement cost and
allowing load balancing to perform efficiently.

II. PROPOSED WORK

A. Virtual Servers:
The concept of virtual servers was first proposed to

improve load balance. Like a physical peer node, a virtual
server is responsible for a contiguous portion of the DHT’s
identifier space. A physical peer node can host multiple
virtual servers and, therefore, can own multiple
noncontiguous portions of the DHT’s identifier space. Each
virtual server participates in the DHT as a single entity. For
example, each virtual server has its own routing table and
stores data items whose IDs fall into its responsible region
of the DHT’s identifier space.

From the perspective of load balancing, a virtual server
represents certain amount of load (e.g., the load generated
by serving the requests of the data items those IDs fall into
its responsible region). When a node becomes overloaded, it
may move part of its loads to some lightly loaded nodes to
become light in which the basic unit of load movement is
virtual server. Hence, load balance can be achieved by
moving virtual servers from heavy nodes to light nodes.
Note that the movement of a virtual server can be simulated
as a leave operation followed by a join operation, both of
which are supported by all DHTs. Therefore, using the
concept of virtual servers could make our load balancing
scheme simple and easily applied to all DHTs.

B. System Overview:
The load balancing scheme we present in this paper is

not restricted to a particular type of resource (e.g., storage,
bandwidth, or CPU). However, we make two assumptions in
our work. First, we assume that there is only one bottleneck
resource in the system, leaving multi resource balancing to
our future work. Second, we assume that the load on a
virtual server is stable over the timescale it takes for the load
balancing algorithm to perform.

Basically, our load balancing scheme consists of four
phases:

a. Load balancing information (LBI) aggregation:
Aggregates load and capacity information in the
whole system.

b. Node classification: Classify nodes into overloaded
(heavy) nodes, under loaded (light) nodes, or neutral
nodes according to their loads and capacities.

c. Virtual server assignment (VSA): Determine virtual
server assignment from heavy nodes to light nodes in
order to have heavy nodes become light. The VSA
process is a critical phase because it is in this phase

that the heterogeneity information is used to make
our load balancing scheme heterogeneity -aware.

d. Virtual server transferring (VST): Transfer assigned
virtual servers from heavy nodes to light nodes. We
allow VSA and VST to partly overlap for fast load
balancing.

Each node may depend solely on its own load and
capacity to determine whether it is overloaded or under
loaded, without requiring the system-wide load balancing
information. Consider a node i with the load Li and the
capacity Ci. Node i’s utilization Ui is the fraction of its
capacity that is used: Ui = Li / Ci. If Ui > 1, node i is
identified as a heavy node. Otherwise, it is a light node or
neutral node (Ui = 1).

C. Mechanism for load transfer between different
nodes:

For load transfer among different nodes, each node
maintains its own list of participating nodes to which it
wants to communicate for load sharing. Each node
maintains its own job queue along with some predefined
threshold values to initiate load transfer. Let t be the time
when tasks were last executed and a(tj) be the arrival time
of task tj and e(tj) be time when it starts executing. Then the
jobs in the queue are those being executed and ready to be
executed are given by { tj / a(tj) ≤ t t, e(tj) ≤ t } and { tj /
a(tj) ≥ t , e(tj)≥ t }.

D. Load balancing information (LBI) aggregation:
Load Balancing Information (LBI) Aggregation Based

on the k-ary tree structure. First we create the k-ary tree and
calculate the total machine load and Max load using the
following procedure that is shown in figure1 and then
aggregate load and capacity information in the whole
system. Each KT node periodically, at an interval T,
requests LBI from its children, while each KT leaf node
simply asks its hosting virtual server to report LBI. Note that
a DHT node hosts multiple virtual servers. In order to avoid
reporting redundant LBI of a DHT node, a DHT node (say
i) randomly chooses one of its virtual servers to report LBI,
in the form of < TLi, Ci, Li, max >(where TLi, Ci, Li,max
stand for the total load of virtual servers, the capacity, and
the maximum load of virtual servers on the node i,
respectively).
 Procedure GetMachineload ()

 int TL =0
 For t = 0 To nCounters – 1

 tValue = GetPerformanceCounterValue(
CounterObjects(t), CounterNames(t), CounterInstances(t))

 TL += tValue * CounterWeights(t)
 Next

 Return (tMachineLoad)
 End
Procedure GetMaxLoad()

t, tMaxLoad =0;
 For t = 0 To nCounters - 1
 Int tValue = CounterMax(t)

tMaxLoad += tValue * CounterWeights(t)
 Next

M.Buvana et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,17-21

© 2010, IJARCS All Rights Reserved 19

 Return (tMaxLoad)
End

E. Node classification:
After the LBI aggregation, the KT root node

disseminates <TL,C,Lmin> along the k-ary tree in a top-
down fashion to each KT leaf node, which in turn distributes
the<TL,C,Lmin> to its own hosting virtual server. Note that
one of the goals of our load balancing scheme is to ensure
fair load distribution over DHT nodes by assigning the load
to a DHT node in proportion to its capacity. Let Ti denote
the target load of a DHT node i proportional to its capacity.
We have Ti = (TL/ C + ε)Ci (ε is a parameter for a trade off
between the amount of load moved and the quality of
balance achieved. Ideally, ε is 0). Therefore, a DHT node i
can be defined as:

a. A heavy node if TLi > Ti.
b. A light node if (Ti - TLi) >= Lmin.
c. A neutral node if 0 <= (Ti - TLi) < Lmin.

F. LC-Virtual Server Selection (LC-VSS) and
Transferring:

To assign IDs to virtual servers, called Low Cost Virtual
Server Selection (LC-VSS). The Virtual Server Assignment
process proceeds along the k-ary tree in a bottom-up sweep,
it recursively assigns virtual servers among DHT nodes
scattered in an increasingly larger contiguous portion of the
DHT’s identifier space3 until the whole DHT’s identifier
space (for which the k-ary tree root node is responsible). In
other words, the VSA process is identifier space-based in
that the virtual server assignments are performed earlier
among those DHT nodes which are closer to each other in
the DHT’s identifier space. Similar to the LBI aggregation
process, the VSA process is also resilient to system failures
due to the robustness of the k-ary tree it depends on. After
the k-ary tree recovers from DHT node’s failures, the VSA
process can continue along the tree in a bottom- up fashion.
It is worth pointing out that the VSA process discussed
above is heterogeneity-ignorant because the logical
closeness in the DHT’s identifier space does not necessarily
reflect physical closeness of DHT nodes. We name it
heterogeneity -ignorant VSA.

G. ID space balance for heterogeneous DHTs.:
In a DHT-related work, Reference [15] developed two

schemes which divide an ID space fairly among a set of
nodes of heterogeneous capacities, providing efficient ID
lookup and node join and leave algorithms. However, they
assume a centralized system with no overlay network. Their
SHARE strategy is very similar to our VSS: in both, each
node selects an interval of the ID space of size Θ (log n),
and ownership of a segment is “shared” among the nodes
whose intervals overlap that segment. However, they
employ this technique to handle nodes of very low capacity.
In contrast, we cluster a node’s IDs in order to share overlay
links. Moreover, the way in which the ID space sharing is
performed in Reference [15] is more complicated than in our
scheme; notably, nodes need Θ (log2 n) IDs, rather than Θ
(log n).

H. Load balance by object reassignment.:
The above strategies balance load by changing the

assignment of IDs to nodes. Another approach is redirection:
store a pointer from an object’s ID to the arbitrary node
currently storing it. This can balance the load of storing and
serving data, but not load due to routing or maintenance of
the overlay — and if objects are small, routing dominates
the bandwidth and latency of storing and finding an object.
Reference [3] demonstrated heterogeneous capacities and
obtains a constant-factor load balance. Each node
periodically contacts another, and they exchange objects if
one node’s load is significantly more than the other’s. But
their bound on movement cost depends on the ratio of the
maximum and minimum node capacities.

III. INTERACTION BETWEEN THE FRAMEWORK
OF LOAD BALANCING

Figure 1 shows how the load balancing framework
components interact with each other at run-time.
a. Assign load to the Distributed P2P system however,

the client transparently invokes the request on the load
manager itself.

b. The load balancer dispatches the system enumerated
information such as Bandwidth, CPU usage, load as a
request to its distributed P2P system.

c. The distributed P2P system queries the load analyzer
and it analysis the Nodal information.

d. Node is classified by the Load Balancer like heavy
loaded, light loaded, neutral based upon the capacity
and total load.

e. Then assign the load to the virtual server then allocate
the heavy loaded system resources are shared with the
light loaded system

f. Calculate the CPU usage and it sends to the another
system through the interface.

IV. HETEROGENEITY-AWARE LOAD BALANCING

The basic idea behind the heterogeneity aware load
balancing is to make virtual server assignments (i.e., the
VSA process) heterogeneity-aware by using heterogeneity
information

A. Generating Heterogeneity Information:
Landmark clustering has been widely used to generate

heterogeneity information. It is based on an intuition that
nodes physically close to each other are likely to have
similar distances to a few selected nodes. In a DHT overlay
network, the landmark nodes can be chosen from either the
overlay itself or from the Internet. For a DHT node D, it
measures the distances to a set of m landmark nodes (e.g., m
=15) and obtains a landmark vector < d1; d2; . . . ; dm>.
Node D is then mapped into a point in a m-dimensional
Cartesian space by having the landmark vector as its
coordinates.

M.Buvana et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,17-21

© 2010, IJARCS All Rights Reserved 20

B. Heterogeneity-Aware VSA Using heterogeneity
Information:

After generating heterogeneity information, a big
challenge we now face is how to effectively use it to guide
virtual server assignments such that they are assigned
between physically close heavy nodes and light nodes.

Therefore, we divide the m-dimensional landmark space
into 2mn grids of equal size (where n controls the number of

grids used to divide the landmark space) and fill a Hilbert
curve within the landmark space to number each grid. We
then number each DHT heavy/light node with the grid
number of the grid in which its landmark vector falls. We
call this grid number the Hilbert number, which will serve as
a DHT key. Due to the heterogeneity preserving property of
the Hilbert curve, closeness in the Hilbert number reflects
physical heterogeneity.

Figure 1 illustrates how the load balancing components interact with each other at run-time.

V. CONCLUSION

In this paper, we present an efficient, heterogeneity-aware
Dynamic load balancing scheme to tackle the issue of load
balancing in DHT-based P2P systems. This framework is a
flexible foundation to implement different load balancing
schemes for distributed applications. The first goal of our load
balancing scheme is to align those two skews in load
distribution and node capacity inherent in P2P systems to
ensure fair load distribution among nodes—that is, have nodes
carry loads proportional to their capacities. The second goal is
to use the heterogeneity information to guide load
reassignment and transferring, thereby minimizing the cost of
load balancing and making load balancing fast and efficient.

VI. REFERENCES

[1] Karger.D and M. Ruhl. “New Algorithms for Load
Balancing in Peerto- Peer Systems”. Technical Report MIT-
LCS-TR-911, MIT LCS, July 2003.

[2] Karger.D.R and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. Third Int’l
Workshop Peer-to-Peer Systems (IPTPS), Feb. 2004

[3] Karger.D and M. Ruhl. “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems”. In Proc. SPAA, 2004.

[4] Zhu .Y and Y. Hu, “Towards Efficient Load Balancing in
Structured P2P Systems,” Proc. 18th Int’l Parallel and
Distributed Processing Symp. (IPDPS), Apr. 2004.

[5] Rao.A, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Structured P2P Systems,” Proc.
Second Int’lWorkshop Peer-to-Peer Systems (IPTPS), pp. 68-
79, Feb. 2003.

M.Buvana et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,17-21

© 2010, IJARCS All Rights Reserved 21

[6] Godfrey.B, K. Lakshminarayanan, S. Surana, R. Karp, and
I.Stoica.”Load balancing in dynamic structured P2P
systems”. In Proc. IEEE INFOCOM, Hong Kong, 2004.

[7] Surana.S , B. Godfrey, K. Lakshminarayanan, R. Karp, and I.
Stoica. “Load balancing in dynamic structured P2P systems.
In Performance Evaluation”.Special Issue on Performance
Modeling and Evaluation of Peer-to-Peer Computing
Systems, 2005.

[8] H. Shen and C. Xu. “Locality-aware randomized load
balancing algorithms for structured p2p networks”. In Proc.
of ICPP, pages 529–536, 2005.

[9] Karger.D, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web”. In ACM Symposium on Theory of
Computing, pages 654–663, May 1997.

[10] Haiying Shen and Cheng-Zhong Xu “Hash-based Proximity
Clustering for Load Balancing in Heterogeneous DHT
Networks”.PODC 2006.

[11] Manku.G . “Balanced binary trees for ID management and
load balance in distributed hash tables. In Proc. PODC, 2004.

[12] Naor.D and U. Wieder. “Novel architectures for P2P
applications: thecontinuous-discrete approach”. In Proc.
SPAA, June 2003.

[13] Stoica.I , R. Morris, D. Karger, M. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” Proc. ACM SIGCOMM,
pp. 149-160, Aug. 2001.

[14] Dabek. F, M.F. Kaashoek, D. Karger, R. Morris, and I.
Stoica,“Wide-Area Cooperative Storage with CFS,” Proc.
18th ACM Symp. Operating Systems Principles (SOSP), pp.
202-215, Oct. 2001.

[15] Brinkmann.A, K. Salzwedel, and C. Scheideler. “Compact
and adaptive placement strategies for non-uniform
capacities”. In Proc. ACM Symposium on Parallel
Algorithms and Architectures (SPAA), Winnipeg, Canada,
2002.

[16] Zhao.B.Y, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerance Wide-Area Location and
Routing,”Technical Report UCB/CSD-01-1141, Computer
Science Division, Univ. of California, Berkeley, Apr. 2001.

[17] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. “Tapestry: An Infrastructure for Fault-
tolerant wide-area location and routing”.IEEE Journal on
Selected Areas in Communications,12(1):41–53, 2004.

[18] Dipanjan Chakraborty, Anupam Joshi, and Yelena Yesha.
“Integrating service discovery with routing and session
management for ad-hoc networks”. Journal of Ad hoc
Networks,UMBC ebiquity publications,Vol2 No.4,2006.

[19] Kaouther Abrougui, Azzedine Boukerche and Hussam
Ramadan. “Efficient load balancing and QoS-based location
aware service discovery protocol for vehicular ad hoc
networks”. EURASIP Journal on Wireless Communications
and Networking 2012,

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. “A scalable content-addressable network”. In Proc.
of ACM SIGCOMM, pages 329–350, 2001.

	INTRODUCTION
	PROPOSED WORK
	For t = 0 To nCounters – 1

	INTERACTION BETWEEN THE FRAMEWORK OF LOAD BALANCING
	HETEROGENEITY-AWARE LOAD BALANCING
	CONCLUSION
	REFERENCES

