
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 72

ISSN No. 0976-5697

Context Informatics in Ubiquitous Computing

Prof. Ajay Gadicha*, Prof. Vijay B. Gadicha and Dr. A.S.Alvi
Assistant Professor in Information Technology Department Amravati

Head Department of Computer Science & Engineering Amravati
Head, Department of Information Technology P.R.M.I.T & R, Badnera Amravati, India

ajjugadicha@gmail.com, v_gadicha@rediffmail.com, Abrar_alvi@rediffmail.com

Abstract: Sensing the state of the environment is an important source for context-aware applications. Several approaches exist to provide
sensor information to mobile application nodes. As the extreme cases we have pure infrastructures and p ur e a d h o c n e t w o r k s . In order
to allow sensor platforms to serve both of these approaches, we have designed a universal sensor platform and integrated it into an
infrastructure-based approach as well as into ad hoc networks. In this paper we discuss the requirements on such a platform, the design,
and the experiences.

Keywords: AWQL, AWML,

I. INTRODUCTION

Sensing environmental conditions, such as tempera-
ture, humidity or light conditions, is - besides location
information - an important source of context information.
Several approaches exist to provide sensor information to
mobile application nodes. As the extreme cases we differ-
entiate pure infrastructure-based systems and pure ad hoc-
based systems. In an infrastructure-based system, a special
context infrastructure is responsible for collecting, storing
and offering context information to application nodes. This
infrastructure is missing in ad hoc-based systems. Here
mobile application nodes access sensors in their vicinity
directly using short range communication technologies,
store the context information locally and distribute it
among other mobile devices while moving around. We will
provide a more detailed discussion of these two models in
the system model section.[1]

To allow interoperability among the various sensor
sources, a common protocol is needed to uniformly access
sensor information provided via an infrastructure or via an
ad hoc system. In a large-scale project - the Nexus project
[7] - we are developing an infrastructure that provides access
to various kinds of information embedded in mod- els of the
real world ranging from simple models to highly

Detailed 3D models. In order to access and model
this information we have developed two XML-based
lan- gauges, AWQL and AWML - the Augmented World
Query Language and the Augmented World Modeling
Language. In parallel to that we investigate the information
exchange in plain ad hoc networks.[2]

To evaluate the feasibility of using AWQL and AWML
for simple sensor devices, we have developed the Context-
Cube, an autonomous sensor device that is deployed in the
environment and offers context information [2]. If a sensor
device provides access to its information using AWQL and
AWML, mobile devices can retrieve this information and

the device can also be easily integrated into the Nexus
infrastructure.

The paper is structured as follows. First, we will dis-

cuss requirements on a context-retrieving platform that can
feed infrastructures as well as ad hoc-based systems with
sensor information. After that, the design of the Context-
Cube is presented. We will discuss the integration of the
Context Cube into the two system models before related
work is presented.[3]

II. REQUIREMENTS

First we will discuss the two system models: infrastruc-
ture-based and ad hoc-based. Briefly, a hybrid s ys t e m
model is sketched. Then the requirements on the integra-
tion of a context sensing device into these system models
are presented.

A. System Model:
At t w o extremes, infrastructure-based and ad hoc- based

systems both provide a foundation for context-aware
computing. In both cases, we assume users to carry mobile
application devices, on which context-aware applications
are executed. Sensors, either placed in the environment or
attached to the mobile devices obtain sensor information. In
the future, we expect that sensors will be deployed in a
large number providing information about light, tempera- ture,
humidity and other environmental conditions. Manu-
factured in large quantities, they may become as cheap as
an electric bulb and may be installed in the same way.
Plugged into a power outlet, energy is not an issue and the
sensors can operate nearly maintenance-free.

In infrastructure-based systems, like Nexus [7], TEA
[4], or the Context Toolkit [3], a specialized context infra-
structure serves as a central access point for applications
and sensors. Applications a c c e s s the infrastructure to
retrieve context information. Sensors are linked to the

Ajay Gadicha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 72-77

© 2010, IJARCS All Rights Reserved 73

infrastructure to provide it with their sensor information.
Using such an infrastructure allows applications to access
context information which has been captured by sensors far
away f r o m t h e i r c u r r e n t position b u t r e q u i r e s
mobile devices and sensors to be connected to the
infrastructure as all communication takes place through the
infrastructure. This can become costly, e.g. in terms of
energy usage.

In contrast to this, in an ad hoc-based system the con-
text information is retrieved directly from autonomous sen-
sors in the vicinity and stored on the mobile devices. To
obtain context information that is not available locally,
mobile devices have to exchange their stored sensor infor-
mation with other mobile devices. As a result, it is likely
that applications will only gain access to context informa-
tion that has been captured in their physical vicinity.

Note, that the context information which is captured and
made available immediately via an infrastructure can be
considered current. In an ad hoc setting it is hard to
ensure that the most recent state of a sensor observation is
propagated. For a detailed discussion of this matter, see e.g.
[9].

A hybrid system combines approaches, infrastruc- ture
and ad hoc-based. Sensors are connected to the infra-
structure but can also be accessed by mobile devices. Hence,
the context information can be fed both into the
infrastructure and directly to mobile application devices.

In the following, we want to look at the requirements
resulting from the integration of sensor platforms into such a
hybrid system.

B. Context Provision:
Let us now look at context capture and the provision of

context to mobile application nodes. In the infrastructure
case, the context is captured by sensors which are con-
nected to the infrastructure via a sensor/infrastructure-spe-
cific protocol. Nodes obtain the information through an
interoperability protocol supported by the infrastructure. In
An ad hoc case, the sensors may be located on the mobile
nodes themselves. In this case, the integration of context
capture can be achieved locally on the node, even with pro-
prietary means. However, in order to provide locally stored
sensor information to other nodes, some sort of interopera-
bility protocol regarding sensor data exchange has to be
established among nodes. The same is true to obtain sensor
information from external sensor devices placed in the
environment.[5]

As mentioned above, it is likely that ad hoc and infra-
structure-based approaches will co-exist and a sensor plat-
form should be able to serve both worlds. In order to support
applications with as much context information as is available,
mobile nodes in ad hoc networks should be able to retrieve
context information from an infrastructure, if it can be
accessed, and context information collected in an ad hoc
network should be fed into the infrastructure whenever
possible.

To allow the interoperability of sensor information - or
more general context information - exchange, a common
representation and exchange protocol is required. This pro-

tocol should be suitable for both the integration of the Con-
text Cube into an infrastructure and the use within an ad
hoc-based system. As we have already developed lan-
guages that allow the modelling and querying of informa-
tion within our Nexus infrastructure, we will present the
relevant aspects of these languages in the following and
discuss how they can be applied in the scope of our Con-
textCube, thus also exploring the suitability of the
approach in an ad hoc environment.
a. Integration into the Nexus Environment. As the goal
of the Nexus project is to provide a platform for con- text-
aware applications based on an augmented model of the
real world, we have developed the Augmented World
Modeling Language (AWML) for modeling the real world
and the Augmented World Query Language (AWQL) for
querying the Augmented World Model data.

The A u g m e n t e d W o r l d c o m p r i s e s s t a t i c r e a l
world objects such as buildings, roads and rooms, mobile
objects such as people, cars and trains, but also virtual
objects such as virtual post-its and virtual advertising
columns. With these virtual objects information from
existing information spaces like the WWW can be attached
to a location in the real world, where they are relevant, e.g.
the web page with information about a historic site can be
placed at the site itself.

All the objects in the Augmented World are modelled in
AWML. There are attributes that describe the geometry of
an object relative to a coordinate systems, others provide a
symbolic description such as a name and an address and
others again model the relation between objects such as the
part-of relation.

The objects belong to classes that are structured in a
hierarchical class schema i.e. a church is a building, which
in turn is a static object and a Nexus object. In order to
include the information provided by the ContextCube into
our class schema, the different sensor classes have to be
modelled, so that the sensors can become part of the Aug-
mented World.

To query the Augmented World, we have developed
AWQL. The language allows the specification of restric-
tions on the objects and attributes to be returned. Such
restrictions can be spatial such as inside and overlaps,
require certain attribute values or specify the inclusion or
exclusion of objects and attributes. Restrictions can be
combined using the boolean operators and, or and not. A
more detailed description of AWML and AWQL can be
found in [10].

Ajay Gadicha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 72-77

© 2010, IJARCS All Rights Reserved 74

Figure 1: The Nexus Architecture

Using AWQL and AWML or, as we will see, a subset of
these languages, for the interaction with the ContextCube
allows an easy integration of the Context Cube into the Nexus
platform. The N e x u s platform i s built on the assumption
that there are a large number of servers holding some part of
the Augmented World Model data. A federa- tion layer
integrates information from all these heteroge- neous
sources to provide the applications with a
homogeneous view of the Augmented World. This works
as follows (see Figure 1): An application queries a federa-
tion component (using AWQL). The federation component
checks the Area Service Register for the servers that have
relevant information for answering the query. It then sends
subqueries to all the sources (again using AWQL) and inte-
grates the results of the subqueries (in AWML) into a sin-
gle result (again in AWML), which is returned to the
application.

The ContextCube can now be integrated into the Nexus
platform by registering it with the Area Service Register,
providing its location and the available sensors. If the sen-
sor information is needed for answering a query, the feder-
ation component will find the Context Cube as a source
when checking the Area Service Register. It then simply
has to query the ContextCube using its standard query lan-
guage, AWQL, and will get an answer in AWML.
b. The ContextCube in an Ad Hoc Environment: In
an ad hoc environment mobile devices can communicate
directly with any ContextCube in their transmission range
using a wireless communication interface. Thus, sensors
which are also integrated in an infrastructure can be used
directly by devices nearby which do not have access to the
infrastructure or do not want to use it, because an uplink to
the infrastructure may be too costly, either financially or in
terms of energy consumption.

In such an environment we typically have a very heter-
ogeneous set of devices. Hence, interoperability plays an
important role and can be achieved by using an open proto-
col as provided by AWML and AWQL. Using the same
protocol for both, the infrastructure and the ad hoc mode
offers the advantage of only having to implement a single
interoperability protocol for the ContextCube.

III. CONTEXTCUBE PROTOTYPE

This section describes the architecture of the Context-
Cube.

A. Hardware:
The central hardware component of the ContextCube is

the TINI platform developed by Dallas Semiconductors [13].

Figure 2: The ContextCube prototype

It is equipped with 1 MB of RAM and a multitude of
interfaces such as serial RS-232, 1-Wire [14], and multi-
purpose I/O ports. The TINI platform includes a runtime
environment to execute JAVA applications and a class library
that provides access to all hardware interfaces. Fig- ure 2
shows the prototype setup of the ContextCube, which
currently looks more like a flat square. However, it should
easily be possible to pack the components into a nice little
cube, if the ContextCube is to be produced in larger quanti-
ties. The 1-wire interface is a serial master-slave bus that
provides simple and robust means of connecting sensors to
the TINI. Each 1-wire device has a 64 bit globally unique
ID that is divided into a 48 bit serial number, an 8 bit
device family code, and an 8 bit CRC. The length of the 1-
wire bus can be extended to up to 200 m and up to 100
devices can be connected to a single master [14].

The prototype of the ContextCube currently contains
sensors for temperature, humidity, brightness, light fre-
quency (to detect artificial light), and sound level.

The network interfaces to query the sensors are an IEEE
802.11b interface in ad-hoc mode connected to the RS-232
port of the TINI and its integrated 802.3 interface. The
application protocol described in the next section runs on
top of the TCP/IP stack of both interfaces.

B. Software:
The ContextCube supports only the subset of AWQL

that is necessary for querying the sensor information pro-
vided by its different sensors. Additional elements of AWQL,
e.g. elements that are used to specify spatial restrictions were
omitted.

Ajay Gadicha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 72-77

© 2010, IJARCS All Rights Reserved 75

Figure 3: AWQL Query

In Figure 3 an example AWQL query is shown that
queries the current temperature value provided by the tem-
perature sensor. As specialized sensors have not been defined
as part of the standard Nexus class schema (yet), they had
to be defined as an extension. The standard con- cept in
Nexus to create such an extension is to define an extended
class schema (ecs). In this case the ContextCube ecs
defines, for example, the temperature sensor, which extends
the general sensor class of the standard Nexus class schema.
In the AWQL query, the ContextCube ecs is refer- enced in
the scope element. Then, a restriction defines that only
objects of the type temperatureSensor are to be returned. A
filter specifies that only the attributes value, accuracy and
type are of interest. All other attributes. e.g. the timestamp
of the sensor reading, are excluded. In Fig- ure 4 the
AWML result to the query is shown. Again the scope is
specified.The NOL (Nexus Object Locator) is the

Figure 4: AWML Result

Unique ID of the temperature sensor within the Nexus

plat- form. As specified in the query, the values for value,
accu- racy and type are returned.

Now that we have presented an AWQL query and an
appropriate AWML result, we will give an overview of
how the ContextCube handles incoming AWQL queries
and returns the results (see Figure 5). An AWQL query is
wrapped in a SOAP message and sent to the ContextCube
using the http protocol, which is currently the standard way
of sending AWQL queries in Nexus. The http server run-
ning on the TINI [15] passes the request to the AWQL
servlet that first uses an XML parser [17] to extract the
query from the SOAP message. The AWQL request is then
passed to the AWQL parser component that ensures the
validity of the enquiry and converts it to a sensor request.
The sensor request in turn is passed to the sensor worker
component, which is able to access the sensors needed for
answering the request. The AWML composer receives the
sensor readings from the sensor worker and returns an
AWML message wrapped in a SOAP envelope to the serv-
let. The servlet now passes the response to the requesting
client.

In addition to the software components discussed above,
the ContextCube needs to support a service discov- ery
mechanism to allow devices entering its transmission range
to automatically detect it and request its sensor infor- mation.
There are a number of existing approaches for ser- vice
discovery available (see e.g. [16], [12]). An approach, that is
especially suitable for our purpose is UPnP [16], as UPnP,
like our system, is based on XML and SOAP, and
therefore enables us to reuse the corresponding software
components. We will omit a more detailed discussion of
the service discovery process in this paper. After the Con-
textCube has been discovered, AWQL requests are sent and
processed in exactly the same way as shown above.

Figure 5: Overview of the query process

As we have shown, a sensor platform like the Context-
Cube can easily be integrated into the Nexus platform, so
the sensor information can be accessed, embedded into a
rich model of the real world. For the infrastructure-based
case, we assume that the mobile device on which the appli-
cation is running has a wireless connection to the infra-

Ajay Gadicha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 72-77

© 2010, IJARCS All Rights Reserved 76

structure, e.g 802.11 or GPRS. The mobile device also has
some means to determine its current position, e.g. GPS out-
doors or an infrared-based system indoors - manual posi-
tioning by the user is another possibility. Given such an
environment, an application can make use of an infrastruc-
ture-based platform such as the Nexus platform that pro-
vides context information.

In many research projects on context-aware computing
the target devices have been equipped with sensors that can
be accessed locally, e.g. see [11]. This means that every
device running a particular application has to be equipped
with the appropriate sensors. Our work focuses on provid-
ing context information to devices that are either not
equipped with appropriate sensors or devices that want to
access context information of areas that are out of their
sensing range.

The Context Toolkit [3] is a framework for context-

IV. APPLICATIONS (INTEGRATION)

This section presents two application scenarios for the
ContextCube platform.

A. Ad Hoc Application:
The ad hoc-based access to sensors makes context- aware

applications possible even on devices that do not have any
integrated sensors. The limited communication range of
the devices involved ensures that the requesting device is in
the vicinity of the ContextCube. In many cases this allows
the assumption that the environmental context of the device
is similar to the ContextCube’s context. Addi- tionally, the
ad hoc mode of the ContextCube can be used to make the
context information available to devices that are in its
vicinity but too far away to communicate directly. For such
situations it has been shown that a flooding-based
information dissemination process can effectively distrib-
ute information in an ad hoc network, see e.g. [6]. An
application that makes use of such mechanisms is the Usenet-
on-the-fly [2]. Here information that is grouped according to
topics is replicated on devices in the spatial vicinity of the
source.

Aware applications. It provides three main abstractions
for context information: context widgets, context
interpreters, and context aggregators. The context widgets
are the repre- sentation of low-level context information for
applications. Context interpreters allow different
application-specific interpretations of the same low-level
context. The context aggregators are used to combine two
or more widgets into higher-level contextual information.

In the TEA project [4] researchers have developed a
self-contained awareness device to capture context infor-
mation. The device is directly attached to a user’s device
and provides information to applications running on that
device. It can, for example, be attached to a palm top, a
mobile phone, or a wearable computer. The infrastructure
of TEA provides means for sensor fusion similar to the
Context Toolkit.

The ContextCube is not intended to be attached to a sin-
gle device, but serves as an information source for different

applications over time, both in close vicinity and from remote
locations. It can serve infrastructures like TEA or the
Context Toolkit as well as being used by mobile nodes in an
ad hoc network. This, however, requires an interoper- ability
protocol for the exchange of sensor data which is not
provided by most existing approaches with the excep- tion
of the Nexus platform [10]. The languages of the Nexus
platform have not originally been designed to be interpreted
on small devices, such as sensors. But as we have shown,
subsets of the languages are suitable for the purpose and
allow an easy integration.

The Smart-Its project (e.g. [4], [8]) aims at augmenting
and interfacing everyday items. The goal is to provide a
small and unobtrusive platform with sensors that can easily
be attached to artifacts. These sensors can exchange infor-
mation with other Smart-Its. Supporting software infra-
structure or sensor interoperability protocol has - so far - not
been realized.

V. CONCLUSION

We have presented requirements on a sensor platform that
can serve two approaches to provide context informa- tion
to applications on mobile devices: infrastructure-based and
ad hoc. Since both approaches exist, sensor platforms
should be capable of serving both approaches. We have
shown the design of such a sensor platform - the Context-
Cube - and discussed the integration into an infrastructure
and an ad hoc-based approach. Subsets of the XML-based
languages of the Nexus platform can be successfully used
to integrate the Context Cube into Nexus as well as provide
its information to mobile nodes.

VI. REFERENCES

[1]. Bauer, M., Becker, C., and Rothermel, K.: Location Models
from the Perspective of Context-Aware Applications and
Mobile Ad Hoc Networks. In: Workshop on Location
Model- ing for Ubiquitous Computing, UBICOMP 2001,
Atlanta, 2001.

[2]. Becker, C., Bauer, M., and Hähner, J.: Usenet-on-the-fly:
supporting locality of information in spontaneous
network- ing environments. In: CSCW 2002 Workshop
on Ad hoc Communications and Collaboration in Ubiquitous
Comput- ing Environments, New Orleans, USA, 2002.

[3]. Dey, A., Abowd, G., Salber, D.: A Context-Based
Infrastruc- ture for Smart Environments. In: 1st
International Workshop on Managing Interactions in Smart
Environments (MANSE '99), Dublin, Ireland, 1999.

[4]. Gellersen, H.-W., Schmidt, A., Beigl, M.: Multi-Sensor
Con- text-Awareness in Mobile Devices and Smart
Artifacts. In: Journal on Mobile Networks and
Applications, Special Issue on Mobility of Systems,
Users, Data and Computing in Mobile Networks and
Applications (MONET), Imrich Chlamtac (Ed.), Oct
2002

[5]. Hörr, N.: Entwicklung eines Gerätes zur Erfassung des

Ajay Gadicha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 72-77

© 2010, IJARCS All Rights Reserved 77

Umgebungskontextes - ContextCube (in german),
Studienar- beit (study thesis) Nr. 1849 at the Department
of Computer Science, IPVS, University of Stuttgart,
Germany, 2002.

[6]. Ho, C., Obraczka, K., Tsudik, G., and Viswanath, K.:
Flood-ing for Reliable Multicast in Multi-Hop Ah Hoc
Networks. In: Workshop on Discrete Algorithms and
Methods for Mobility at the Fifth Annual International
Conference on Mobile Computing and Networking
(MobiCom'99), Seattle, Washington, USA, 1999

[7]. Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K. and
Schwehm, M.: Next Century Challenges: Nexus - An
Open Global Infrastructure for Spatial-Aware Applications.
In: Proceedings of the Fifth Annual International
Conference on Mobile Computing and Networking
(MobiCom'99), Seattle, Washington, USA, 1999

[8]. Kasten, O., Langheinrich, M.: First Experiences with
Blue- tooth in the Smart-Its Distributed Sensor Network.
In: Inter- national Workshop on Ubiquitous
Computing and Communications at PACT’01, Barcelona,
Spain, 2001.

[9]. Rothermel, K., Becker, C., and Hähner, J.: Consistent
Update Diffusion in Mobile Ad Hoc Networks. Technical
Report 2002-04, Computer Science Department, University

of Stut- tgart, Germany, 2002.

[10]. Nicklas, D. and Mitschang, B.: The Nexus Augmented
World Model: An Extensible Approach for Mobile,
Spatial-Aware Applications, 7th International Conference
on Object-Ori- ented Information Systems, 2001

[11]. Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more
to context than location. In: Interactive Applications of
Mobile Computing (IMC), Rostock, Germany, 1998

[12]. Waldo, J.: The Jini Architecture for network-centric
comput- ing. Communications of the ACM, pp. 76-82, July
1999

[13]. TINI platform:
http://www.ibutton.com/TINI/index.html

[14]. 1-wire information:

http://www.maxim-ic.com/appnotes.cfm/appnote_number/
857

[15]. http server:

http://www.smartsc.com/tini/TiniHttpServer/index.html

[16]. Universal Plug and Play Device Architecture, Version 1.0:
http://www.upnp.org/download/UPnPDA10_20000613.ht
m

[17]. XML parser: http://www.wilson.co.uk/xml/minml.htm

http://www.ibutton.com/TINI/index.html�
http://www.maxim-ic.com/appnotes.cfm/�
http://www.smartsc.com/tini/TiniHttpServer/index.html�
http://www.upnp.org/download/UPnPDA10_20000613.htm�
http://www.upnp.org/download/UPnPDA10_20000613.htm�
http://www.wilson.co.uk/xml/minml.htm�

