
Volume 3, No. 4, July- August 2012 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                                                                                                                                   179 

ISSN No. 0976-5697 

Enhancing Template Extraction accuracy of Heterogenous Web Documents 
Mr.S.Sathees Babu 

Department of Computer Science and Engineering 
P.S.N.A. College of Engineering and Technology 

Dindigul, Tamil Nadu, India 
ssbabu@psnacet.edu.in 

Abstract: Countless websites contain large set of pages generated using the common templates with contents. Due to the extraneous terms in 
templates, they degrade the accuracy and performance of web applications. Thus, template detection techniques have received a lot of attention 
recently to enhance the performance of web applications such as search engines, clustering, and classification. Thus, in order to prevent the 
duplication in the templates, nowadays we handle them with some detection techniques.  In this paper, we present techniques for automatically 
cropping clusters based on MDL cost that can be used to extract search result records from dynamically generated web documents. Thus, we 
don’t need additional template extraction process after clustering. Experimental results show that our proposed approach is feasible and effect for 
improving extraction accuracy. 
 
Keywords: Minimum Description Length (MDL), template extraction, MinHash, Max Algorithm, dice algorithm, clustering 

I. INTRODUCTION  

Internet is the source of information in recent decades. It 
helps us gaining more over everything all around the world. 
Some web pages are created based on some common 
template. Due to the irrelevant terms in the template, it 
degrades the performance of search engine. In this paper, we 
can detect and extract the common template from 
heterogeneous web pages. From this, it improves the 
performance of search engine, classification and clustering. 
Good template extraction technique can improve the 
performance of applications like industries, medical, 
Government and etc.  

Extracting the common template from the homogeneous 
web documents has been studied in [2][3][4]. In this, the 
URL of the web documents is identical. All the documents 
are included in the same cluster when we use only URLs to 
group documents. To overcome the limitation of this 
problem, we can extract the templates from the 
heterogeneous web documents; the correctness of the 
extracted templates depends on the quality of clustering. 

Extracting the template based on DOM tree presented in 
[2][5]. In this, it uses the tree edit distances measure for 
extracting common templates. However, it is not easy to 
select proper training data and not work for all the time. In 
[base paper], it employs Minimum Description Length 
principle for cluster the web documents and estimate the 
jaccard coefficient between sets. MDL cost of the clusters 
and execution time are high. 

Our goal is to manage unknown number of templates and 
improve the efficiency and scalability of template detection 
and extraction algorithm. We extend the MinHash[7] by 
estimate the Dice’s coefficient between two sets. It estimates 
MDL cost with partial information of documents. It is fully 
automated and robust without requiring many parameters. 
From the clustered document we can extract the data. 

In summary, our contributions are as follows, 
a. It constructs DOM tree for each document and 

calculate the support value for each path. It calculates 

the threshold value for each document. From this, it 
constructs essential path matrix. 

b. We cluster the document based on the MDL 
Principle. It effectively manages unknown number of 
clusters. In this method, document clustering and 
template extraction are work together. 

c. Experimental results confirm the effectiveness and 
scalability of our algorithm. The solution is much 
faster than related work and shows better accuracy. 

We construct DOM tree for each document and calculate 
the support value for each path. We calculate the threshold 
value for each document. From this, we construct essential 
path matrix. 

We cluster the document based on the MDL Principle. It 
effectively manages unknown number of clusters. In our 
method, document clustering and template extraction are 
work together. Experimental results confirm the 
effectiveness and scalability of our algorithm. Our solution is 
much faster than related work and shows better accuracy. 

II.  HTML DOCUMENTS AND DOCUMENT OBJECT 
MODEL 

For example, let us consider simple HTML documents in 
Fig.1. We construct the Document Object Model (DOM) tree 
for the documents.  The DOM presents an HTML document 
as a tree structure. For instance, the DOM tree of a simple 
document is shown Fig. 2. We find support values for each 
path in the documents based on the DOM tree. Document is 
represented as a set of paths {p1,p2,p3}.  

 
<TABLE> 
<TBODY> 
<TR> 
<TD>ShadyGrove</TD> 
<TD>Aeolian</TD> 
</TR> 
</TBODY> 
</TABLE> 

Figure 1.  Simple Web Document 



S.Sathees Babu, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,179-183 

© 2010, IJARCS All Rights Reserved                                                                                                                                                    180 

 
Figure 2.  A graphical representation of the DOM figure1 

For example, let us consider other sample HTML 
documents in Fig.3. We construct the Document Object 
Model (DOM) tree for the documents.  The DOM presents 
an HTML document as a tree structure. We find support 
values for each path in the documents based on the DOM 
tree are shown in Table 1. Document d1 is represented as a 
set of paths {p1,p2,p3}. Document d2 is represented as a set 
of paths {p1,p2,p3,p4}. 

 

 
Figure 3.  Simple Web Documents 

For a node in a DOM tree, we denote the path of the node 
by listing nodes from the root to the node in which we use ’\’ 
as a delimiter between nodes. For example, in the DOM tree 
of d3 in Figure 1, the path of a node ’Template Extraction’ is 
Document\<html>\<body>\<h1>\Template Extraction. 

Table: 1 PATHS of tokens and their supports 

III. ESSENTIAL PATHS AND TEMPLATES 

Collection of web documents can be represented by D = 
{d1,d2,…,dn}. We define a path set PD as the set of all paths 
in D. For each document di, we calculate the threshold value. 
Threshold values for each document are distinct. The mode 
of each document is very effective to make templates, while 
contents are eliminated. We use the mode of support value 
for each document as the minimum support values of paths in 
each document as the minimum support threshold for each 
document. If several modes of support values, we will take 
the smallest mode. For example, In Fig. 1 and Table 1, the 
paths appearing at the documents d1 are p1, p2 and p3 whose 
supports are 4, 4, and 3 respectively. Since 4 is the mode of 
them, we use 4 as the minimum support threshold value for 
td1. Then p1 and p2 are the essential paths of d1. Similarly 
the minimum support thresholds td2, td3, and td4 are 4, 2, 
and 2. Based on the threshold value for each document we 
construct essential path matrix. Row represents paths in the 
document set and column represents documents. We use a | 
PD | X |D| matrix ME with 0/1 values to represent the 
documents with their essential paths. If a path pi is an 
essential path of a document dj then the matrix ME is 1. 
Otherwise it is 0. 

Example 1: Consider the HTML documents D = {d1, d2, 
d3, d4} in Figure 1. All the paths and their frequencies in D 
are given in Table 1. Assume that the minimum support 
thresholds td1, td2, td3, and td4 are 4, 4, 2 and 2 respectively. 
The essential path sets are E (d1) = {p1, p2}, E (d2) = {p1, 
p2}, E(d3) = {p1, p2, p4, p5, p6, p7} and E(d4) = {p1, p2, 
p4, p5, p6, p7}. We have the path set PD ={pi|1 ≤ i ≤ 9} and 
the matrix ME becomes as follows: 
                                          d1     d2     d3     d4 
                         
                                  P1    1       1       1         1 
                                  P2    1       1    1         1 

      P3    0       0     0 0 
                                  P4    0       0       1         1  
       ME       =          P5    0       0       1         1 
                                  P6    0       0       1         1 
                                  P7    0       0       1         1 
                                  P8    0       0       0         0 
                                  P9    0       0       0         0                      

 

IV. FORMATION OF CLUSTERING BAESED ON 
MINIMUM DESCRIPTION LENGTH PRINIPLE 

Initially each document is considered as a cluster. A 
cluster is denoted by a pair (Ti,Di), where Ti is a set of 
essential path in the document and Di is a set of documents in 
the cluster. Set of all the clusters are represented by 
C={c1,c2,…,cn} for a web document set D.(i.e) we have n 
clusters for a web document set D. Construct MT, MD and MΔ 
matrix. MT represents information of each cluster with its 
template paths and MD represents the information of each 
cluster with its member documents. Construct MΔ based on 
the formula ME= MT.  MD + MΔ. The MDL cost of the 
clustering and a matrix are denoted by L(C) and L (M), 
respectively. Cost of the clusters can be calculated by L(C) 
=L (MT) + L (MD) +L (MΔ).  L(MD) becomes |D|.log2 |D|.  
L(MT) and L(MD) are calculated  by  

 Path Supports 

P1 Document\<html> 4 

P2 Document\<html>\<body> 4 

P3 Document\<html>\<body>\<br> 3 

P4 Document\<html>\<body>\list 2 

P5 Document\<html>\<body>\<h1>  2 

P6 Document\<html>\<body>\<big> 2 

P7 Document\<html>\<body>\<b> 2 

P8 Document\<html>\<body>\<h1>\ 
TemplateExtraction 1 

P9 Document\<html>\<body>\<h1>\data 1 



S.Sathees Babu, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,179-183 

© 2010, IJARCS All Rights Reserved                                                                                                                                                    181 

H(X) = ∑
−∈

−
}1,0,1{

2 )Pr(log)Pr(
x

xx  

                      L (M) = |M|·H(X) 
For example consider the web documents in Figure 1 and 

ME in Example 1 again. Assume that we have a clustering C 
= {c1, c2} where c1 = ({p1, p2}, {d1, d2}) and c2 = ({p1, 
p2, p3, p4, p5, p6, p7}, {d3, d4}). Then, MT, MD and MΔ 
are as follows and we can see that ME = MT ·MD +MΔ. 
 
               1   1   0   0 
               1   1   0   0 
               0   1   0   0   1  1  0  0 
               0   1   0   0                                 0  0  1  1 
MT =        0   1   0   0  MD =     0  0   0 0 
               0   1   0   0                                 0  0   0  0 
               0   1   0   0 
               0   0   0   0 
                 0   0   0   0 
                                                                                                                                          
 
 

          0   0   0   0 
                       0   0   0   0 
                       0  -1   0  -1 
                       0   0   0   0 
  MΔ =       0   0   0   0 
                       0   0   0   0 
                       0   0   0   0 
                       0   0   0   0 
                       0   0   0   0 
 
 

Then, with MT , Pr(1) = 9/36 and Pr(0) = 27/36 and we 
have L(MT) = |MT| · H(X) = 36 · (− 9/36 log29/36 – 27/36 
log2 27/36 ) = 29.21.Similarly L(MD)=8, L(MΔ)=11.145  and 
thus L(C)=48.35. In this way we can calculate MDL cost for 
different clusters combination and select minimum MDL 
cost cluster as a best cluster. 

V. TEXT–MDL ALGORITHM USING 
AGGLOMERATIVE CLUSTERING ALGORITHM 

For computation of Optimal cost calculation, we can 
reconstruct the formula [1] for calculating MDL cost as  
  |ME| · β /α · (Pr(1) of MT +(Pr(1)+Pr(−1)) of MΔ)+L(MD) 
=β/α · (# of 1s in MT + # of 1s and -1s in MΔ) + L(MD)    (1) 

From this, cluster doesn’t depend on the any cluster in the 
cluster set C. 

procedure FindMDLCost(cm, cn , C) 
begin 

a. Db := Dm U Dn ; 
b. Tb := {px|sup(px,Dk) ≥ |Dk|+1)/ 2 , px ∈ E k}; 
c. cb := (Tb, Db); 
d. C” := C − { cm, cn } U { cb }; 
e. MDL := Approximate MDL cost of C” by equation 

(1); 
f. return (MDL, cb); 

End 
procedure GetCorrectPair(cb, C) 
begin 

a. (cA
m, cA

n ) := the current best pair; 
b. cA

b:= a cluster made by merging cA
m and cA

n; 
c. MDLmin := the current best approximate MDL cost; 

d. for each cl in C do { 
e. (MDLtmp, ctmp) := GetMDLCost(cm, cn , C); 
f. if MDLtmp < MDLmin then { 
g. MDLmin := MDLtmp; 
h. (cA

m, cA
n, cA

b ) := (cb, cl, ctmp); 
i. }   
j. }  
k. return (cA

m, cA
n, cA

b); 
End 

Initially get current best pair and merge the two clusters 
and calculate the MDL cost for the clusters. If this MDL cost 
is minimum compare to the initial MDL cost then we can 
merge the two clusters otherwise get another two clusters. 

VI. TEXT – HASH ALGORITHM USING MINHASH  
FUNCTION 

We will present the estimation of MDL cost of a 
clustering by MinHash. From that, we can reduce the 
dimensions of documents and find the best pair quickly. 

A. Min Hash: 
Jaccard’s coefficient between two sets A1 and A2 is 

defined as γ(A1, A2) = 
|21|
|21|

AA
AA




 and Dice’s coefficient 

between two sets A1 and A2 is defined as ∂( A1, 

A2)=
|2||1|
|21|2

AA
AA

+


. Both are calculated using Min-Wise 

Independent permutation. It estimates the coefficient by 
repeatedly assigning random ranks to the universal set and 
comparing the minimum values from the ranks of each set. 
For example refer[1]. 

Consider a set of random permutations Π = {π1, · · ·, πL } 
on a universal set U={r1,…..rM} and a set A1⊂U. Let π(ri) 
be the rank of ri in a permutation πi and min(πi(A1)) denote 
min(πi(rj)|r,∈A1). ∏ is called min- wise Independent if we 
have Pr(min(πi(A1)= π(x))=1/|A1| for every set A1⊂  U and 
every x ∈  A1 for all πi ∈∏  Then for any sets A1,A2 ⊂  
U for all πi∈ ∏ ,we have Pr(min(πi(A1))=min(πi(A2)))= 

)2,1( AAγ , where )2,1( AAγ is the Jaccard’s coefficient 
defined previously and )2,1( AA∂ is the Dice’s Coefficient. 

For K sets A1,A2,..,Ak, the Jaccard’s coefficient is 
defined by 

γ(A1…… Ak) =  | A1∩……..∩ Ak | 
                          | A1U……...U Ak | 

For k sets A1, A2……Ak , the Dice’s coefficient is defined  
by 
 

∂( A1, .,Ak) =  2 . | A1∩………..∩ Ak |  
                             | A1|+………. +| Ak| 

We can estimate γ(A1…… Ak) using the signature 
vectors as follows [5][6] 

γ(A1… Ak) = |{i|sigA1 [i] = · · · = sigAk [i]}| 
      |Π| 

B. Extended MinHash: 
Thus, given a collection of sets S={A1,…,Ak}, we 

extend MinHash to estimate the probabilities needed to 
compute the MDL Cost. We denote the probability as 

ξ(X,m) = |{ rj | rj is included in m number of sets in X}| 
|A1 U. . . U Ak| 



S.Sathees Babu, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,179-183 

© 2010, IJARCS All Rights Reserved                                                                                                                                                    182 

Then, ξ(X,m) is defined for 1≤ m≤ |S| and ξ(S,|S|) is the 
same as the Jaccard’s coefficient of sets in S.  

We can estimate ξ(X,m) with sigX as follows [1]. 
ξ(X,m) = |{ i | n(sigX[i]) = m}| 

                    |Π|         (2) 

C. Calculation of MDL Cost using MinHash: 
Computation of MDL cost using n(Di,k). Recall  that 

sup(px,Di) is the number of documents in Di having the path 
px as an essential path. Let n(Di,k) represent the number of 
paths px whose sup(px,Di) is k. the following formula shows 
that we can count the numbers of 1s and -1s in MT and MΔ  
is follows  

 1 | |

( , ). | |
( , )

. ( , )
j i

i

i jd D
i

il D

D k d
n D k

l D l
∈

≤ ≤

ξ
=

ξ

∑
∑

       (3) 
For proof refer [1]; 
For k with 1≤ k≤ |Di|, we have 

| | 1 | | 11 | |
2 2

. ( , ) (| | 1). ( , )
i i

i

i i i
D Dk k D

k n D k D k n D k
+ +

≤ < ≤ ≤

+ − +∑ ∑  (4) 

D. Algorithm: 
procedure FindHashMDLCost(cm, cn , C) 
begin 

a. Db := DmUDn , cb := (NULL, Db), C’’ := C − {c m, 
cn}U {cb}; 

b. for each πq in Π do { 
c. r(sigDb [q]) := min(r(sigDm [q]), r(sigDn [q])); 
d. if r(r(sigDm [q]) == r(sigDn [q]) then 
e. n(sigDb [q]) := n(r(sigDm [q]) + n(sigDn [q]); 
f. else n(sigDb [q]) is from the less one; 
g. } 
h. Calculate  ξ(Db, l) by equation 2; 
i. Compute n(Db, b) by equation4; 
j. Get Pr(1) and Pr(−1) in MT and MΔ by equation 3; 
k. MDL := Approximate MDL cost of C’’ by equation 

1; 
l. return (MDL, cb); 

end 
In this algorithm we estimate the MDL cost, but do not 

generate the template paths of each cluster. cb is initialized 
as the empty set. We can use the signature of cb is 
maintained to estimate the MDL cost. 

VII. TEXT – MAX ALGORITHM USING MINHASH  
FUNCTION 

When we merge the clusters hierarchically, we select 
two clusters which maximize the reduction of the MDL cost 
by merging them. In order to efficiently find the nearest 
cluster, we can calculate Jaccard’s coefficient between two 
cluster’s cm and cn as follows   




)(

)(

)(

)(

nmk

nmk

DDd k

DDd k

dE

dE

∪∈

∪∈  

Then, given three clusters cm, cn and ck, if Jaccard’s 
coefficient between cm and cn is greater than that between 
cm and cb, we assume that the reduction of the MDL cost by 
merging cm and cn will be greater than that by cm and cb. 

By using this approach, we can reduce the search space to 
find the nearest cluster. Using this approach, the search space 

becomes the number of clusters whose Jaccard’s coefficient 
with cm is maximal. See the algorithm follows. 
Procedure TakeInitBestPair(C) 
begin 

a. Merge all clusters with the same signature of 
MinHash; 

b. MDLmin := ∞; 
c. for each cm in C do {  
d. N := clusters with the maximal Jaccard’s coeff. with 

cm; 
/* If the maximal Jaccard’s coefficient is 0, N is 
NULL */ 

e. for each cn in N do { 
f. (MDLtmp , cb) := TakeHashMDLCost(cm, cn , C); 
g. if MDLtmp < MDLmin then {  
h. MDLmin := MDLtmp; 
i. (cA

m, cA
n, cA

b) := (cm, cn, cb); 
j. }  
k. } 
l. }  
m. return (cA

m, cA
n, cA

b); 
end 

Procedure TakeHashBestPair(ck, C) 
begin 

a. (cA
m, cA

n) := the current best pair; 
b. cA

b:= a cluster made by merging cAm and cAn; 
c. MDLmin := the current best approximate MDL cost; 
d. N := clusters with the maximal Jaccard’s coeff. with 

cb; 
/* If the maximal Jaccard’s coefficient is 0, N is 
NULL */ 

e. for each cl in N do { 
f. (MDLtmp , ctmp) := FindHashMDLCost(cb, cl, C); 
g. if MDLtmp < MDLmin then {  
h. MDLmin := MDLtmp; 
i. (cA

m, cA
n, cA

b) := (cb, cl, ctmp); 
j. } 
k. }  
l. return (cA

m, cA
n, cA

b); 
end 

VIII. TEXT – DICE ALGORITHM USING MINHASH  
FUNCTION 

In order to improve the efficiency for clustering we can 
implement another method Dice’s coefficient calculation. 
Compare to previous algorithm it reduces the execution time 
and improve the MDL cost. Dice’s coefficient between two 
cluster’s cm and cn can be calculated as follows 

     
 



)( )(

)(

)()(

)(2

mk nk

nmk

Dd Dd kk

DDd k

dEdE

dEX

∈ ∈

∪∈

+
 

Procedure TakeDiceInitBestPair(C) 
begin 

a. Merge all clusters with the same signature of 
MinHash; 

b. MDLmin := ∞; 
c. for each cm in C do {  
d. N := clusters with the maximal Jaccard’s coeff. with 

cm; 
/* If the maximal Dice’s coefficient is 0, N is NULL 
*/ 

e. for each cn in N do { 



S.Sathees Babu, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,179-183 

© 2010, IJARCS All Rights Reserved                                                                                                                                                    183 

f. (MDLtmp , cb) := TakeHashMDLCost(cm, cn , C); 
g. if MDLtmp < MDLmin then {  
h. MDLmin := MDLtmp; 
i. (cA

m, cA
n, cA

b) := (cm, cn, cb); 
j. }  
k. } 
l. }  
m. return (cA

m, cA
n, cA

b); 
end 

Procedure TakeDiceHashBestPair(ck, C) 
begin 

a. (cA
m, cA

n) := the current best pair; 
b. cA

b:= a cluster made by merging cAm and cAn; 
c. MDLmin := the current best approximate MDL cost; 
d. N := clusters with the maximal Jaccard’s coeff. with 

cb; 
/* If the maximal Dice’s coefficient is 0, N is NULL 
*/ 

e. for each cl in N do { 
f. (MDLtmp , ctmp) := FindHashMDLCost(cb, cl, C); 
g. if MDLtmp < MDLmin then {  
h. MDLmin := MDLtmp; 
i. (cA

m, cA
n, cA

b) := (cb, cl, ctmp); 
j. } 
k. }  
l. return (cA

m, cA
n, cA

b); 
end 

IX. EXPERIMENTAL RESULTS 

A. Implemented Algorithms: 
We implemented related work and our proposed 

algorithms as follows 
a. TEXT-MDL: it is agglomerative clustering algorithm 

with the approximate entropy model. 
b. TEXT-HASH: It is the agglomerative algorithm 

clustering algorithm with MinHash signature. 
c. TEXT-MAX: It is the clustering algorithm with both 

MinHash signature and Jaccard’s coefficient. 
d. TEXT-DICEMAX: it is the clustering algorithm with 

both MinHash signature and Dice’s coefficient. 

B. Performance evaluation: 
TEXT-MAX and TEXT-DICEMAX are faster execution 

time compare to TEXT-HASH without sacrificing accuracy. 
We compared the execution times and the MDL costs of 
TEXT-MDL, TEXT-HASH, TEXT-MAX and TEXT-
DICEMAX with various numbers of documents from 1000 
to 5000. Execution time is plotted in Fig 3a.  

 TEXT-DICEMAX, TEXT-HASH, TEXT-MDL 
and TEXT-MAX MDL cost are plotted in Fig 3b. TEXT-
DICEMAX is having high MDL cost compare to other 
algorithm. 

 

 
Figure: 4 

X. CONCLUSION 

We introduced a different algorithm based on MDL cost 
template detection from heterogeneous web documents. We 
employed the MDL principal to manage the unknown 
number of clusters. TEXT-DICEMAX algorithm shows the 
better execution time and high MDL cost value. It improves 
the performance of clustering and classification of template.  

XI.  REFERENCES 

[1] Chulyun Kim and Kyuseok Shim,“Automatioc Template 
Extraction from Heterogeneous Web pages”, IEEE 
Transactions on knowledge and data Engineering,vol 
23,April 2011. 

[2] M.de Castro Reis, P.B.Golgher,A.S.da Silva, and A.H.F. 
Laender, “Automatic Web news Extraction using Tree Edit 
Distance”, proc.13th Int’l Conf.World Wide Web,2004. 

[3] I.S. Dhillon,S.Mallela, and D.S. Modha,”Information- 
Theoretic Co-Clustering’, proc.ACM SIGKDD,2003. 

[4] K.Vieira, A.S. da Silva ,N.Pinto, E.S. de Moura, J.M.B. 
Cavalcanti, and J.Freire, “A Fast and Roubust Method for 
Web Page Template Detection and Removal”, Proc.15th 
ACM Int’l Conf. Information and Knowledge 
Management9cikm0,2006. 

[5] S.Zheng, D. Wu, R.Song, and j.R.Wen, “Joint optimationa 
of wrapper Generation and Template Detection”,proc. 
ACM SIGKDD,2007. 

[6] A.Z. Broder, M.Charikar, A.M. Frieze, and 
M.Mitzenmacher, “Min- Wise Independent 
Permutations,”,J.Computr and System Sciences,vol. 
60,pp.630-659,2000. 

[7] Z.Chen, F.Korn,N.Koudas, and S.Muithukrishnan, 
“Selectivity Estimation for Boolean Queries,”,proc. ACM 
SIGMOD-SIGACT-SIGART Symp.Priciples of Database 
Systems(PODS),2000. 

[8] A.Arasu and h.Garcia-Molina, “Etracting structured Data 
from Web Pages,” Proc. ACM SIGMOD, 2003. 

[9] Comparision of similarity coefficient based on RAPD 
markers in the common bean, 
http://dx.doi.org/10.1590/S1415-47571999000300024. 

 

http://dx.doi.org/10.1590/S1415-47571999000300024�

	Enhancing Template Extraction accuracy of Heterogenous Web Documents
	INTRODUCTION
	HTML DOCUMENTS AND DOCUMENT OBJECT MODEL
	ESSENTIAL PATHS AND TEMPLATES
	FORMATION OF CLUSTERING BAESED ON MINIMUM DESCRIPTION LENGTH PRINIPLE
	TEXT–MDL ALGORITHM USING AGGLOMERATIVE CLUSTERING ALGORITHM
	TEXT – HASH ALGORITHM USING MINHASH  FUNCTION
	Min Hash:

	TEXT – MAX ALGORITHM USING MINHASH  FUNCTION
	TEXT – DICE ALGORITHM USING MINHASH  FUNCTION
	EXPERIMENTAL RESULTS
	Implemented Algorithms:

	CONCLUSION
	REFERENCES

