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Abstract: Recently, control-theoretic approaches in multiprocessor environment  have  been studied  and  employed to manage  and  control  the 
performance of computing  systems. Most of the existing control-theoretic approaches  model  computing   systems  as  linear  systems  and apply  
feedback  control.  In  this  paper,  we show discrete event modelling  and  control  techniques  can  be effectively applied  to performance 
management and  control  of computing  systems. We use Active Queue  Management design for multiprocessor environment.    By modelling  the  
logical processor as a queuing system, we formulate the problem  of designing the optimal dropping   strategy   as  an  optimal   queuing   control   
problem under   discrete-event   control  framework. 
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I. INTRODUCTION 

Performance management has been a core research area in 
computer science. As computing systems become more 
pervasive and increasingly complex, managing computing 
systems by human is becoming more and more unfeasible. The 
demand to manage and control computing systems has grown 
rapidly. Traditional practices of automated resource 
management and control largely rely on ad-hoc techniques. As 
a result, changes in workloads and configurations often result 
in poor quality of service (QoS) or even instabilities. Recently, 
researchers discover AQM that feedback control schemes can 
be successfully used in analyzing and designing run-time IT 
systems [1], [2], [3]. In order to apply feedback control 
framework, nearly all previous work use linear models (or 
linearized models) to represent the underlying computing 
systems. However, computing systems are usually nonlinear 
[4] with respect to the resource allocated. In addition, 
workload to computing systems are usually stochastic; its 
parameters may change over a wide range of values. Most 
computing systems are discrete in nature. During the last 
several decades, research has shown that many computing 
systems can be modeled well as discrete-event systems (such 
as automata, petri nets, or queuing systems). [5] [6]. In 
computer system research, however, discrete-event models are 
usually used for off-line capacity planning purposes instead of 
online performance tuning purposes. In this paper, we explore 
the applicability of discrete event control to computing system 
applications. Specifically, we investigate the design of optimal 
dropping strategies for processor in multiprocessor  

 
environment by focusing on a branch of discrete event control  
queuing control. In our approach, we model an each processor 
as a single station queue, and formulate the problem of 
designing the optimal computing instruction strategy as an 
optimal queuing control problem. We then derive the optimal 
control strategy through uniformization and value iteration. 
Our solution gives the optimal computing strategy. 

Based on the controller synthesis, optimal computing 
strategies and its parameters are given adaptively in response 
to different workloads. Hence it can be used in designing self-
configuring. Active Queue Management (AQM) schemes. Our 
work opens a new perspective for studying the active queue 
management policies through queuing control. Since many 
computing systems can be modeled as discrete event systems, 
we believe that discrete-event control approach can be 
successfully applied to performance management of many 
computing systems. 

II. SYNCRONIZATION ALGORITHMS 

In a discrete-event simulation, events need be processed in 
a non decreasing time stamp order, because an event with a 
smaller timestamp has the potential to modify the state of the 
system and thereby affect events that happen later. This is 
what we call the causality constraint. 

Provided that simultaneous events event with the same 
time stamps are sorted deterministically and consistently using 
certain tie-breaking rules, the causality constraint implies a 
total ordering of events. In parallel simulation, the global 
event-list in sequential simulation is replaced by a set of event-
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lists; each logical Processor (LP) maintains own simulation 
clock and a separate event-list that contains events that can 
only affect the state of the corresponding LP. Since each LP 
processes events on its own event-list in timestamp ordering a 
property also known as the local causality constraint the total 
ordering maintained by the original sequential discrete-event 
model is replaced by a partial ordering similar to Lamport’s 
“happens before” relationship [29]. The fundamental 
challenge is therefore associated with the difficulty of 
preserving the local causality constraint at each LP without the 
use of a global simulation clock. 

III. ACTIVE QUEUE MANAGEMENT 

Recent measurements have shown that the growing 
demand for high speed data computation has driven parallel 
computing up exponentially. It is important to achieve low 
data loss and delay, and optimum utilizations of each 
computational unit. Active Queue Management (AQM) 
policies are intended to help achieving both optimum 
utilizations and low delays. The basic idea behind AQM queue 
management scheme is to detect incipient congestion in 
instruction handling with delay early and to convey congestion 
notification to the event handler processor. Hence event 
handler processor will AQM use their transmission rates 
before queues in the network overflow and delay occur AQM. 
To do this, AQM maintains an exponentially-weighted moving 
average of the queue length which it uses to detect congestion. 
When the average queue length exceeds a minimum threshold, 
instruction are randomly dropped or marked with an explicit 
congestion notification (ECN) bit. When the average queue 
length exceeds a maximum threshold, all instruction are 
dropped or marked. While AQM is certainly an improvement 
over traditional drop-tail queues, the performance of the AQM 
algorithm depends significantly upon the setting of each of its 
parameters, which was shown to be a not easy task [22]. 

IV. PROBLEM STATEMENT AND 
FORMULATION 

We assume the event handler processor enforces 
instruction-dropping-based. AQM scheme are used to achieve 
the performance goals of small delay, low dropping rate, and 
high utilization. Let the average arrival rate of incoming 
instruction to the processor be b (inst/sec).The processor 
enforces some “optimal” instruction dropping strategy by 
selecting appropriate instruction dropping probabilities. Let us 
use p(t) to denote the processor’s dropping probability at time 
t, then the outgoing instruction execution rate is b(1 - p(t)) at 
time t.  

Different instruction dropping strategies have different 
impacts on the performance of a processor, including 
instruction delays, number of dropped instructions, and link 
utilizations. Generally speaking, under a given AQM scheme, 
if a processor drops instructions more aggressively, less 
instructions will be admitted and go through the processor, 
hence the outgoing link’s utilization may be lower; but in 
return, the admitted instructions will experience smaller 
delays. On the other hand, if under an AQM scheme which 
drops instructions less aggressively, the admitted instructions 

may be queued up at the processor, hence the admitted 
instructions will experience larger delays. But in this case the 
outgoing link’s utilization may be higher, since more 
instructions are admitted and transmitted by the processor. 

Though the goal of maintaining small instruction delay 
usually contradicts to the goal of admitting more requests and 
maintaining high link utilizations, a good AQM scheme tries 
to make intelligent tradeoffs in an optimal way. For example, 
in order to achieve both high link utilizations and low 
instruction delays, it is desired that the processor’s service 
queue is maintained at a small but steady value [24]. This is 
because a small but steady queue ensures small queuing delay; 
at the same time, the steadiness of the queue allows that there 
are always instructions to be processed in the outgoing link, 
hence help to maintain a high link utilization. In the following 
section, we formulate the “optimal” dropping strategy as an 
optimal queuing control problem. 

A. Problem Formation: 
In this section, we formally formulate the optimal dropping 

strategy problem for an AQM processor. For simplicity, we 
assume that the outgoing interface of the processor is an 
M/M/1 queue: the incoming instructions to the processor 
follows a Poisson arrival with rate b; the service rate of the 
processor for the instructions is exponentially distributed with 
rate ¹. As it has been discussed above, in order to achieve both 
low instruction delay and high link utilization, we would like 
the (equilibrium) processor queue to be small but steady. Let 
us use S to denote the target queue length of the processor. At 
the same time, it is desired for the processor to minimize the 
number of dropped instructions. 

For a specific AQM policy π, let us define the admitting 
instructions rate at a specific time t as λπ(t), where 
0<=λπ(t)<=b. Then b - λπ(t),  represents the dropping rate at 
the processor for this policy. Let Sπ(t) denote the queue length 
at time t under policy π, so the difference between the current 
queue length and the target queue length is Sπ(t) - S. We 
define an objective function with respect to policy π as 
 

 

Where E[.] is the expectation function. 
The objective function Vπ represents the average cost for 

policy π under infinite time horizon. The first term within the 
integration represents the deviation of current queue length 
from the target queue length at time t. The second term 
represents the total rate of dropped instructions at time t under 
policy π. W is a weight of the valuation between these two 
terms. It represents the relative cost of dropping instructions. 
The sum of these two terms within the integration represents 
the total quadratic cost under policy π at time t. It reflects our 
desired goal of low instruction delay, high utilization, and low 
instruction loss in AQM policy design. In the following 
discussion, for the ease of notation, we move the policy 
subscript π out from the terms in the square brackets to the 
expectation function in Eq. (1) without incurring ambiguity, 
that is 
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Our design objective is then to find a policy under which 
the average cost function is minimized, i.e. 

Minπ Vπ 
suject to 0<=λπ(t)<=b 

This Equation defines an interesting optimal control 
problem. The control input to the system is in terms of the rate 
of admitted incoming instructions, i.e. λ(t). Note the dynamics 
of the system in our formulation are governed by the queuing 
system instead of a traditional linear system represented by 
differential/difference equations, hence our formulation is not 
a typical optimal control problem. In the following section, we 
give a solution to this optimal queuing control problem. 

V. SOLUTION METHOD VIA VALUE 
ITERATION 

In this section, we present a method to solve the above 
mentioned optimal queuing control problem. First, we note the 
queue length S(t) forms a continuous time Markov 
chain(CTMC). Let N denote the processor’s maximum buffer 
size, then there are N +1 states for this continuous time 
Markov chain. State i €{0,…..N} of the Markov chain 
corresponds to the case where there are i instructions in the 
queue. In our solution method, we first convert the CTMC into 
a discrete time Markov chain (DTMC) to facilitate the usage 
of value iteration algorithms. This is done through a technique 
called uniformization [25]. 

A. Conversion from CTMC to DTMC: 
For a continuous time Markov chain(CTMC), state 

transitions are allowed to occur at any time instant. Therefore 
CTMC is widely used to model a large number of real-world 
stochastic systems. On the other hand, discrete time Markov 
chain (DTMC) models are easy to handle. Fortunately, we can 
convert a CTMC to a DTMC, making the two chains 
stochastically  equivalent through uniformization. To this end, 
we select a uniform rate γ= µ+ b. The transition probabilities 
among states for the stochastically equivalent DTMC are 
obtained by dividing the original transition rate in the CTMC 
by γ. This procedure is shown in the following equations. 

 

 

 

 

 

 

 

 

 

 
Figure 1 

 
Figure: 2 illustrates the CTMC and the stochastically equivalent DTMC. 

The second step is converting the objective function from 
CTMC to the equivalent DTMC counterpart. The cost function 
governed by the original CTMC is 

 
Therefore correspondingly, the DTMC’s cost function can 

be derived as 
 

The corresponding DTMC’s optimal queuing control 
problem is as follows 
Minπ  Vπ 

       

 
Subject to 0<= λ(i)<= b 

In the optimal queuing control problem of DTMC, the 
dynamics of the system are governed by the DTMC,  

B. Solution to the Optimal Queuing Control Problem 
of DTMC: 

The optimal queuing control problem for the DTMC can 
be solved using the following value iteration algorithm [25].  

C. Value iteration algorithm: 
Step 0:  Set n=0 and V0(0) = 0; Set iteration stop criteria, i.e. 

the maximum number of iterations M, and accuracy 
tolerance threshold ε>0; 

Step 1: Choose a state x (0 <= x <= N) as a baseline 
(distinguished) state; 

Step 2:   Set Vn(i) =  
Step 3:   Set un+1(i) = Vn(i) - Vn(x); 
Step 4:  Goto Step 2, until the maximum number of iterations 

M is reached for δ= max(iεs) | V(i  
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Step 5:   Output Vn(x) and the stationary policy realizing 
 Min | C(I,  

It is worth noting that the theoretic solutions given in this 
section may not be directly applicable to real-world 
applications. This is because: First, modeling the processor 
queue as an M/M/1 queue is based on a simplified assumption. 
Real world instructions may not follow Poisson arrival, and 
the service rate of instructions may not be exponential; 
Second, the complexity of value-iteration (and other dynamic-
programming based solution methods) is usually high. 
However, for these real-world applications, we can use 
techniques such as Q learning[26] and neuro-dynamic 
programming [27] to derive near-optimal solutions. 

D.     Evaluation: 
To evaluate the queuing control based approach, we 

implemented the uniformization and value iteration algorithm 
to get the optimal dropping strategies for the processor under 
different set-ups. In this section, we report these results and 
discuss the effect of various design parameters. Note the value 
iteration algorithm gives the optimal strategy in terms of 
admitting instructions rate ¸ with respect to processor’s queue  
length. Here we also report the optimal dropping probability of  
the processor. The dropping probability is expressed as 

 
Where b is the incoming instructions rate, and i is the 

Processor’s current queue length. 
In the first set of experiments, the incoming instructions 

rate is set to b = 120 (inst/sec); the service rate of the 
processor is set to µ= 100 (inst/sec); processor’s buffer size is 
set to N = 200,and the target queue length is set to S = 50. Fig. 
3–Fig. 5 report the optimal admitting instructions rate and the 
optimal dropping  probability (p) with respect to the queue 
length in the processor. For Fig. 3, the weight W representing 
the relative cost of dropping instructions is set to 0:01. For 
Fig. 4 and Fig. 5, we set W = 0:1, and W = 1:0 respectively.  

 
Figure. 3 Optimal admitting rate and dropping probability v.s.  queue length, 

when W  = 0.01 

 
Figure. 4. Optimal admitting instructions rate and dropping probability v.s. 

queue length, when W  = 0.1. 

 
Figure. 5. Optimal admitting instructions rate and dropping probability v.s. 

processor’s queue length, when W = 1.0. 

We get four observations from the results reported in Fig. 
3–Fig. 5. 

a. The control law of optimal strategies is event-driven, 
since the control action is a function of the number of 
instructions in the current processor queue. This 
contrasts to the classical time-driven control, where 
control action is usually trigger AQM at constant time 
intervals. 

b. Optimal strategies are closed-loop-based feedback 
controls. The feedback  measurement for each optimal 
controller is the number of instructions in the 
processor’s queue. 

c. When the weight W (which represents the relative cost 
of dropping instructions) changes, the optimal dropping 
strategy also changes. The first experiment with W 
=0:01 reflects the situation where dropping instructions 
incurs negligible cost. When we gradually increase the 
value of W, we anticipate the optimal dropping 
probability curve to become more flat since a larger W 
means larger cost will be incur AQM for the dropped 
instructions. This can be clearly observed from Fig. 3 – 
5. 



Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826 

© 2010, IJARCS All Rights Reserved                                                                                                                                               825 

d. The optimal control strategies derived in this paper give 
similar results to other AQM schemes including 
Random Early Detection (AQM) and its variants 
[28],[22]. Our approach is based on solid theoretical 
designand synthesis through queuing systems control. 
As a result, it gives a natural way to calculate the 
controller parameters (i.e. AQM parameters). Unlike 
previous control-theoretical approach [23] which uses 
linearized fluid-approximation of the system as the 
plant model, Our control design is based on the 
nonlinear queuing model. 

A predetermined set of AQM parameters under a 
“typical” workload may not render good performance under 
a different workload. For example, it has been shown in [22] 
that the effectiveness of AQM depends, to a large extent, on 
the appropriate parameterization of the AQM queue when 
load changes. A good control policy should adapt its 
parameters in response to workload dynamics. 

 
Figure. 6. Optimal admitting instructions rate and dropping probability v.s. 

processor’s queue length, when b = 60 (inst/sec). 

Fig. 6 show the optimal admitting instructions rate (λ), 
and optimal dropping probability (p) with respect to the 
queue length in the processor when incoming instructions’s 
intensity changes. In these experiments, the service rate of 
the Processor is µ = 100 (ints/sec), total buffer size is N = 
200, target 

From the results shown in Fig. 6 , we see as the workload 
intensity increases, the corresponding optimal policies begin 
dropping instruction more aggressively. For ex- ample, when 
λ = 60(inst/sec), the optimal policy does not begin dropping 
packets until the processor’s queue length reaches 95 (Fig.  
6);  but  when  under  high  workload  of λ  =  180(inst/sec), 
the  optimal  policy  begins  dropping instructions when 
processor’s queue length reaches only 27 (Fig. 8). In this 
setup, when the processor’s queue length reaches 82, all 
incoming instructions are dropped under the optimal policy, 
as compatible AQM to the value of 106 for the case when λ 
= 60(inst/sec). 

 

VI. CONCLUSIONS AND FUTURE WORK 

The rapid development and pervasive deployment of in 
information technology(IT) has created  a need to enforce 
service and resource management policies automatically.  

In this paper we have described how queuing control 
techniques can be effectively applied to computing system’s 
performance control and management. Specifically, we study 
how to design optimal dropping strategies for multiprocessor 
using this approach. We formulate the problem of designing 
the optimal dropping strategy as an optimal queuing con- 
troll problem. We then derive the optimal controller using 
uniformization and value iteration. Through numerical 
evaluation, we also discussed the effect of various design 
parameters and workload characteristics on the optimal 
dropping strategies. 

Since many computing systems can be modeled as 
discrete-event systems, we believe that discrete-event con- 
tro l approach has its own advantages over many classical 
control-theoretic approaches for these systems. We hope this 
work can bring new ideas and tools to feedback control of 
computing systems. 
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