
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 871

ISSN No. 0976-5697

Tree Based Approach to Use CRC Cards Efficiently in Software Project Management

Vrushali Yogesh Karkare1 and Dr. Nileshsingh V. Thakur2
Dep.of Computer Science and Engineering

Shri Ramdeobaba College of Engineering and Management
Nagpur, India

vrushaliy.karkare@gmail.com,1
thakurnisvis@rediffmail.com

Keywords: Software engineering, CRC cards, Software project management, Tree, Graph

2

Abstract: In software engineering, CRC (Class-Responsibility-Collaborator) cards are used for object oriented analysis, design and modelling. These
CRC cards are used to understand the objects, its responsibilities, that is coupling between the classes and sometimes it is used to adjust the load on
the classes. After the designs of these CRC cards, they are used for implementation. This paper presents an approach based on tree for efficient use of
CRC cards in software project management. This paper suggests that the CRC cards are not only use for implementation but also for project
management, like load management with team members, project scheduling and tracking using a data structure graph and trees. Efficacy of the
proposed approach is justified through the analytical results.

I. INTRODUCTION

In software industries, the software development
assignments are generally, not only time bound activities but
also constrained by some other parameters, for example, cost
of the project; complexity of the problem; real time or stand
alone system application, etc. Software engineering principles
are used in software development. Software engineering [1] is
the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software, and the study of these approaches; that is, the
application of engineering to software. It is the application of
engineering to software because it integrates significant
mathematics, computer science and practices whose origins
are in engineering. It is also defined as a systematic approach
to the analysis, design, assessment, implementation, testing,
maintenance, and reengineering of software.

One of the important concepts of software engineering is
object-oriented software engineering- is an object modeling
language and methodology. It also uses other design products
similar to those used by object-modeling technique. Object-
oriented analysis (OOA) applies object-modeling techniques
to analyze the functional requirements for a system. Object-
oriented design (OOD) elaborates the analysis models to
produce implementation specifications. Class-based modeling
is used in object-oriented analysis and design (OOAD). It
includes identify-analysis classes by examining the problem
statement, use a grammatical parse to isolate potential classes,
identify the attributes of each class, and identify operations
that manipulate the attributes.

Class-responsibility-collaboration (CRC) cards [1] are
used for OOA and OOAD. CRC cards are a way to describe
the responsibilities and collaborations between objects in an
application. CRC cards are used as a brainstorming technique
designed to walk-through use cases in order to create objects,
responsibilities, and discover collaborators. Individual CRC

cards are used to represent objects. The class of the object can
be written at the top of the card, responsibilities listed down
the left side, collaborating classes are listed to the right of each
responsibility. CRC cards facilitate the software development
work. Presently, most of the industries dealing with the object-
oriented software development are using the CRC cards for
systematic development of software.

This paper presents an approach based on tree [2]
evaluation of the CRC card to use it more efficiently for
project management. Presented approach move around the
cost evaluation of the classes and the relevant methods, based
on this, the priorities of the development of the modules can
be decided and accordingly the allotment of the modules to the
concerned developer team or member.

This paper is organized as follows: section 2 discusses the
basic fundamentals of tree, CRC cards, and scheduling.
Section 3 consists of the discussion on proposed approach
which is based on tree to use CRC cards efficiently for project
management. Section 4 discusses the application of proposed
approach to the application problem where the analytical result
is presented. Discussion on the analytical results is presented
in section 5. Finally, section 6 discusses the conclusion and
future scope followed by the relevant references.

II. TREE, CRC CARDS, AND SCHEDULING

This section presents the discussion on the basics of tree
data structure, fundamentals related to CRC cards, and project
scheduling and tracking.

A. Tree Data Structure:
A graph [3] data structure consists of a finite (and possibly

mutable) set of ordered pairs, called edges or arcs, of certain
entities called nodes or vertices. The nodes may be part of the
graph structure, or may be external entities represented by
integer indices or references. A graph data structure may also

http://en.wikipedia.org/wiki/Object_modeling_language�
http://en.wikipedia.org/wiki/Object_modeling_language�
http://en.wikipedia.org/wiki/Object_modeling_language�

Vrushali Yogesh Karkare et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,871-875

© 2010, IJARCS All Rights Reserved 872

associate to each edge, some edge value, such as a symbolic
label or a numeric attribute (cost, capacity, length, etc.).
Example of graph with five nodes is shown in Fig. 1 (a). A
tree is data structure derived from graph and is a way of
representing the hierarchical nature of a structure in a
graphical forest. Example of tree with seven nodes is shown in
Fig. 1 (b). Graphs and trees have a wide range of applications
in the field of computer science. Scientifically it can also be
used for many other non computer fields for the simulation
and modeling of designs.

(a) (b)

Figure 1: (a) Graph and (b) Tree

B. Fundamentals of CRC Cards:
CRC cards were introduced by Kent Beck and Ward

Cunningham in their paper “A Laboratory for Teaching
Object-Oriented Thinking” released in OOPLSA’89. Their
original purpose was to teach programmers the object-oriented
paradigm. Although CRC cards were created for teaching,
they have proven useful for much more. They have become an
accepted method for analysis and design.

A CRC card corresponds to a class. It describes the
properties that certain kinds of objects of interest in the
problem/ application domain have in common. An object can

be a tangible thing, person, place, event, or (abstract) concept.
A class should have a single and well-defined purpose that can
be described briefly and clearly. It should be named by a noun,
noun phrase, or adjective that adequately describes the
abstraction. The class name is written across the top of the
CRC-card. A short description of the purpose of the class is
written on the back of the card.

A responsibility is something the objects of a class take
care of; a service provided for other objects. A responsibility
can be either to know something or to do something. To do
something an object usually uses its (local) knowledge. If this
knowledge is not sufficient for the purpose, the class can
require help from other objects i.e. its collaborators. The
responsibilities of a class are written along the left side of the
card.

The collaborators describe which kinds of objects can be
asked for help to fulfill a specific responsibility. An object of a
collaborator class can for example provide further information,
or actually take over parts of the original responsibility (by
means of the collaborators own responsibilities). Collaborators
are written along the right side of the card in the same row as
the corresponding responsibility.

The goal of the CRC-card approach is to develop, discuss
and evaluate object-oriented models. In the role-play
activities, objects are treated as living entities that fulfill
certain responsibilities in the context of the system to be
developed. The general format of CRC card and example of
CRC card for medical application is shown in Fig. 3 (a) and
Fig. 3 (b) respectively.

Class: Class Name
Description:

 Class: Patient
Description: A person receives or received medical
care

Responsibilities Collaborators Responsibilities Collaborators
 Make Appointment Appointments
 Get Last Visit
 Change Status
 Provide Medical History Medical History

(a) (b)

Figure 3: (a) General format of CRC Card and (b) Example of CRC Card

C. Project Scheduling and Tracking:
A project schedule [1] is required to ensure that required

project commitments are met. A schedule is required to track
progress toward achieving these commitments.

In order to make a schedule, the following tasks must be
completed:
a. Identify manageable activities and tasks by decomposing

the process and the product.
b. Determine which tasks are dependent on the completion

of others (which activities must occur in sequence and
which can occur concurrently).

c. Allocate each task a number of work-units (often person-
days), a start date and a completion date.

d. Define responsibilities for the tasks (allocate them to a
person or persons).

e. Define outcomes of the tasks (deliverables) and
milestones for the schedule.

f. Review the proposed tasks, their effort allocation and
start and end dates with the people involved to ensure
there are no conflicts and over allocation.

III. PROPOSED APPROACH

A CRC cards are used for various purposes. They are used
to understand the system as a whole in an object oriented
manner. In presented approach, the CRC cards are considered
for the purpose of task distribution to the team members and
scheduling and tracking the project progress. Proposed

Vrushali Yogesh Karkare et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,871-875

© 2010, IJARCS All Rights Reserved 873

approach is based on the tree formation from the graph of the
CRC card. The decision of the task allotment is based on the
weights or costs associated with the relevant classes and
methods. General steps of the approach are given in next
subsection.

A. Steps of An Approach:
The template is used to format your paper and style the text.

All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications that
anticipate your paper as one part of the entire proceedings, and
not as an independent document. Please do not revise any of
the current designations.
Step 1: Get CRC Cards.
Step 2: Create graph of components with their weights, here

weight of component is the number of classes in that
component.

Step 3: Get Breadth First Search (BFS) [4, 5] of this graph.
Step 4: Create tree of this graph, if the tree is not binary, then

convert it to binary.
Step 5: Get post-order of this graph, this post-order is the

sequence of implementation of modules considering
their dependency.

Step 6: Consider first component in this sequence and create
graph of its classes with their weights, here weight is
the number of methods in that class.

Step 7: In the same way, get BFS of this graph, Get binary
tree and get post-order.

Step 8: This post-order is the sequence of implementation of
classes.

Step 9: Consider this sequence and weights of classes and
accordingly allot the task of implementation of
classes to team members.

Step 10: Repeat the process for other modules.

IV. APPLICATION OF PROPOSED APPROACH

A. Example:
Consider the example of implementation of five classes for

certain software project assignment. CRC Cards for five
classes are shown in Fig. 4 with their responsibilities and
collaborators.

Class : 101

Responsibilities Collaborators
101a
101b 102
101c
101d 103

Class : 102

Responsibilities Collaborators
102a
102b 104
102c 103

Class : 103
Responsibilities Collaborators

103a
103b
103c 105

Class : 104

Responsibilities Collaborators
104a
104b

Class : 105

Responsibilities Collaborators
105a
105b

Figure 4: CRC Cards for five classes, their responsibilities and collaborators

B. Explanation:
To finish the task of implementation of class 101, the

responsibilities 101b and 101d have to be accomplished first.
To accomplish these responsibilities, it needs the help of
classes 102 and 103. So these classes must be completed first.
Again to finish work on class 102, its responsibilities 102b and
102c must be implemented first. They are depending on
classes 103 and 104 respectively.

If the task of all classes is given to five team members, five
classes are distributed. That is one team member is given a
single class. Now person 1 can implement responsibility 101a
and 101c, but has to wait till person 2 finishes class 102 and
person 3 finishes class 103. Also person 2 has to wait till
person 3 finish.

Formulation of graph is possible by using CRC cards given
in Fig. 4. As a CRC card depends on other classes to
accomplish some of its responsibilities, there is a dependency
between the CRC cards and this dependency should be
followed at the time of implementation of the designs. To
formulate a graph by using CRC cards, the classes,
responsibilities and collaborators all will become nodes. Now,
consider classes as a node, then its responsibilities become its
children and the responsibilities which are having
collaborators, these collaborator classes will become children
of these responsibilities node. The formulated graph should be
a directed graph to show the dependency between the nodes. It
is like, class depends on its responsibilities and some
responsibilities depend on collaborators. Again these
collaborators are the classes which are having their own
responsibilities and collaborators. So the graph grows further
in the same manner as, the responsibilities are children on
class and some of the children are having collaborators as their
child.

In formulation of graph, it seems that it will become a tree,
as it shows the dependencies. But as per the definition of tree,
a node can have at most one parent and in this case it is
observed that 101d depends on 103 and also 102c depends on
103. And this scenario is very well possible in formulation of a
graph for certain application problem. Now, node 103 has two
parents 101d and 102c, which is violating the definition of
tree. So it will not form a tree, it is simply a directed graph.
Fig. 5 shows the directed graph created by using CRC cards of
example given in Fig. 4.

Vrushali Yogesh Karkare et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,871-875

© 2010, IJARCS All Rights Reserved 874

Figure 5: A Graph formed using CRC Cards

In the directed graph shown in Fig. 5, the node 103 has 2
parents, namely 102c and 101d. This is because both nodes
102c and 101d depend on node 103 for some functionality. So
this graph is not a tree.

Now, the graph in Fig. 5 seems to be complex and the
complexity cane be reduced by considering only classes of
CRC cards and putting a node weight to the class nodes. Fig. 6
shows the simplified graph with node weights. Node weight is
the number of responsibilities a class has to perform, for
example, a class 102 has to perform 4 responsibilities, so
weight of this class is 4. Classes 102 and 103 have to perform
3 responsibilities so node weight is 3. Likewise, for class 104
and 105 weight is 2.

Figure 6: Simplified graph with node weight

To convert a graph shown in Fig. 6 into tree, the closed
area should be removed. To remove the closed area, take a
breadth first search (BFS) of the graph. Then, BFS of the
graph is- 101, 102, 103, 104, and 105. Constructed tree using
this BFS is shown in Fig. 7. This tree is constructed
considering the order of nodes in BFS and not considering the
edges which are forming the closed regions that is the edge
which is forming another parent to any particular node should
be removed.

Figure 7: Tree formed from graph

The post-order of tree shown in Fig. 7 is- Post-order = 104,
105, 103, 102, and 101. By observing the order got in post-
order, and comparing it with the original graph, then, it
follows that the obtained order in post-order can be used while
implementation and it will be beneficial.

As five persons are working on five classes, then person 1
working on class 101 has to wait till person 3, working on
class 103, completes his/her work. So instead of allotting five
classes to five persons, allot only first two classes as per the
post-order to two persons. After finishing work on classes 104
and 105, allot classes 103 and 102 again to these two persons,
and after completing work on 103 and 102, finally class 101 is
allotted and finished.

V. DISCUSSION

With the use of proposed approach, less man power and no
waiting time is needed to complete the work. Whenever any
class is considered for implementation then it is started and
finished as its dependencies are already completed and so all
the responsibilities can be completed straightforward without
any waiting.

The proposed approach can be used in Rapid Application
Development, where time required for completion of project is
very crucial parameter. To finish the project fast, then there
should not be any dependencies and waiting time because of
dependencies. If work is allotted just by considering the
number of classes, then this is not fair, because some classes
are having many responsibilities and some classes are having
less. By using the node weights, the tasks among team
members can be easily distributed. Maximum number of
responsibilities a class can have depends on the company
policy and designs. For example, consider given 5 classes then
maximum responsibility is available in class 101, so this class
should be given to single person with no other load. Classes
104 and 105 are having fewer loads with total load of 4, so
that can be given to single person. So by using the proposed
approach, the load management and team management can be
performed actively and fairly.

Scheduling and tracking can be performed by using the
sequence in post-order. It is obvious that if the implementation
of class 101 is finished then the implementation of all the
classes is over and it can be treated as 100 % completed. If

Vrushali Yogesh Karkare et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,871-875

© 2010, IJARCS All Rights Reserved 875

implementation up to class 103 is finished then it can be
claimed that 60 % work is finished.

VI. CONCLUSION AND FUTURE SCOPE

Generally the CRC cards are designed for class based
modeling and are used for understanding the classes and use
them for implementation. Presented paper focuses on the use
of CRC cards not only for the understanding and
implementation but also for project management. This project
management can be done in terms of load management to
team members, project tracking and scheduling. The proposed
approach is very much useful for rapid application
development type of projects and the projects having less team
size. Since many times the team members only wait for others
to finish because of dependency, by using the proposed
approach, this waiting time can be reduced or there can be no
waiting time at all. In future, some metrics can be developed
for the performance evaluation of team members. Apart from

this, the simulation of the proposed approach can be carried
out for the real software development problems.

VII. REFERENCES

[1]. R. Pressman, “Software Engineering: A Practitioner’s
Approach”, 7th

[2]. Pai, “Data Structures and Algorithms: Concepts, Techniques
and Applications”, Tata McGraw-Hill Education, 2008.

 edition, McGraw-Hill, 2009.

[3]. V. Aho, J. D. Ullman, and J. E. Hopcroft, “Data Structures
and Algorithms”, Addison Wesley, 1983.

[4]. Brassard and P. Bratley, “Fundamentals of Algorithms”, PHI
Learning, 1996.

[5]. Brassard and P. Bratley, “Algorithmics: Theory and
Practice”, Prentice Hall, 1988.

	INTRODUCTION
	TREE, CRC CARDS, AND SCHEDULING
	A. Tree Data Structure:
	B. Fundamentals of CRC Cards:
	C. Project Scheduling and Tracking:

	PROPOSED APPROACH
	A. Steps of An Approach:

	APPLICATION OF PROPOSED APPROACH
	A. Example:
	B. Explanation:

	DISCUSSION
	CONCLUSION AND FUTURE SCOPE
	REFERENCES

