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Abstract: If the bits of computers are someday scaled down to the size of individual atoms, quantum mechanical effects may profoundly change the 
nature of computation itself. The wave function of such a quantum computer could consist of a superposition of many computations carried out 
simultaneously; this kind of parallelism could be exploited to make some important computational problems, like the prime factoring of large 
integers, tractable. However, building such a quantum computer would place undreamed of demands on the experimental realization of highly 
quantum-coherent systems; present-day experimental capabilities in atomic physics and other fields permit only the most rudimentary 
implementation of quantum computation. 
 
Keywords: Quantum Computing, Qubit, Bloch Spher, Quantum Circuits, Quantum Gates, Shor's algorithm. 

I. INTRODUCTION 

A quantum computer is a device for computation that 
makes direct use of quantum mechanical phenomena, such as 
superposition and entanglement, to perform operations on data. 
Quantum computers are different from digital computers based 
on transistors. Whereas digital computers require data to be 
encoded into binary digits (bits), quantum computation utilizes 
quantum properties to represent data and perform operations on 
these data. 

Civilization has advanced as people discovered new ways 
of exploiting various physical resources such as materials, 
forces and energies. In the twentieth century information was 
added to the list when the invention of computers allowed 
complex information processing to be performed outside 
human brains. The history of computer technology has 
involved a sequence of changes from one type of physical 
realization to another — from gears to relays to valves to 
transistors to integrated circuits and so on. Today's advanced 
lithographic techniques can squeeze fraction of micron wide 
logic gates and wires onto the surface of silicon chips. Soon 
they will yield even smaller parts and inevitably reach a point 
where logic gates are so small that they are made out of only a 
handful of atoms. On the atomic scale matter obeys the rules of 
quantum mechanics, which are quite different from the 
classical rules that determine the properties of conventional 
logic gates. So if computers are to become smaller in the 
future, new, quantum technology must replace or supplement 
what we have now. The point is, however, that quantum 

technology can offer much more than cramming more and 
more bits to silicon and multiplying the clock-speed of  

 
microprocessors. It can support entirely new kind of 
computation with qualitatively new algorithms based on 
quantum principles! 

Consider a register composed of three physical bits. Any 
classical register of that type can store in a given moment of 
time only one out of eight different numbers i.e. the register 
can be in only one out of eight possible configurations such as 
000, 001, 010, ... 111. A quantum register composed of three 
qubits can store in a given moment of time all eight numbers in 
a quantum superposition. This is quite remarkable that all eight 
numbers are physically present in the register but it should be 
no more surprising than a qubit being both in state 0 and 1 at 
the same time. If we keep adding qubits to the register we 
increase its storage capacity exponentially i.e. three qubits can 
store 8 different numbers at once, four qubits can store 16 
different numbers at once, and so on; in general L qubits can 
store 2L numbers at once. Once the register is prepared in a 
superposition of different numbers we can perform operations 
on all of them. For example, if qubits are atoms then suitably 
tuned laser pulses affect atomic electronic states and evolve 
initial superpositions of encoded numbers into different 
superpositions. During such evolution each number in the 
superposition is affected and as the result we generate a 
massive parallel computation albeit in one piece of quantum 
hardware. This means that a quantum computer can in only one 
computational step perform the same mathematical operation 
on 2L different input numbers encoded in coherent 
superpositions of L qubits. In order to accomplish the same 
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task any classical computer has to repeat the same computation 
2L times or one has to use 2L different processors working in 
parallel. In other words a quantum computer offers an 
enormous gain in the use of computational resources such as 
time and memory. 

The paper is organized as, in the section 1 introduces 
quantum computing and in section 2 basics of quantum 
computing is given. In section 3 discuss about the quantum 
computing algorithms. In section 4 enlist advantages of 
quantum computing and finally concluding in section 5.. 

II. BASICS Of QUANTUM COMPUTING 

In this section we present the basic paradigm for quantum 
algorithms, namely the quantum circuit model, which is 
composed of the basic quantum units of information (qubits) 
and the basic logical manipulations thereof (quantum gates). 

A. Quantum bit: 
The Quantum bit is smallest unit of information in a 

quantum computer. Unlike bits in classical systems, which are 
in one of two possible states labeled 1 and 0, a quantum bit 
exists in a superposition of these two states, settling on one or 
the other only when a measurement of the state is made, also 
called qubit. 

The qubit is the quantum analogue of the bit, the classical 
fundamental unit of information. It is a mathematical object 
with specific properties that can be realized physically in many 
different ways as an actual physical system. Just as the classical 
bit has a state (either 0 or 1), a qubit also has a state. Yet 
contrary to the classical bit, 0 and 1 are but two possible states 
of the qubit, and any linear combination (superposition) thereof 
is also physically possible. In general, thus, the physical state 
of a qubit is the superposition ψ = α0 + β1 (where α and β are 
complex numbers). The state of a qubit can be described as a 
vector in a two-dimensional Hilbert space, a complex vector 
space (see the entry on quantum mechanics). The special states 
0 and 1 are known as the computational basis states, and form 
an orthonormal basis for this vector space. According to 
quantum theory, when we try to measure the qubit in this basis 
in order to determine its state, we get either 0 with probability 
α² or  1 with probability  β². Since α² + β² = 1 (i.e., the qubit is a 
unit vector in the aforementioned two-dimensional Hilbert 
state), we may (ignoring the overall phase factor) effectively 
write its state as ψ = cos (θ) 0 + eiφsin (θ)1, where the numbers 
θ and φ define a point on the unit three-dimensional sphere, as 
shown here. This sphere is often called the Bloch sphere, and it 
provides a useful means to visualize the state of a single qubit. 

B. Representation of Qubit: 
The two states in which a qubit may be measured are 

known as basis states (or basis vectors). As is the tradition with 
any sort of quantum states, Dirac, or bra-ket notation, is used to 
represent them. This means that the two computational basis 
states are conventionally written as  and  (pronounced "ket 0" 
and "ket 1"). 

Theoretically, a single qubit can store an infinite amount of 
information, yet when measured it yields only the classical 
result (0 or 1) with certain probabilities that are specified by the 
quantum state. In other words, the measurement changes the 

state of the qubit, “collapsing” it from the superposition to one 
of its terms. The crucial point is that unless the qubit is 
measured, the amount of “hidden” information it stores is 
conserved under the dynamic evolution (namely, Schrödinger's 
equation). This feature of quantum mechanics allows one to 
manipulate the information stored in unmeasured qubits with 
quantum gates, and is one of the sources for the putative power 
of quantum computers. 

To see why, let us suppose we have two qubits at our 
disposal. If these were classical bits, then they could be in four 
possible states (00, 01, 10, 11). Correspondingly, a pair of 
qubits has four computational basis states ( 00 , 01 , 10

, 11 ). But while a single classical two-bit register can 
store these numbers only one at a time, a pair of qubits can also 
exist in a superposition of these four basis states, each of which 
with its own complex coefficient (whose mod square, being 
interpreted as probability, is normalized). As long as the 
quantum system evolves unitarily and is unmeasured, all four 
possible states are simultaneously “stored” in a single two-
qubit quantum register. More generally, the amount of 
information that can be stored in a system of n unmeasured 
qubits grows exponentially in n. The difficult task, however, is 
to retrieve this information efficiently. 

 
Figure 1.  The Bloch Sphere. 

C. Quantum Gates: 
Classical computational gates are Boolean logic gates that 

perform manipulations of the information stored in the bits. In 
quantum computing these gates are represented by matrices, 
and can be visualized as rotations of the quantum state on the 
Bloch sphere. This visualization represents the fact that 
quantum gates are unitary operators, i.e., they preserve the 
norm of the quantum state (if U is a matrix describing a single 
qubit gate, then U†U=I, where U† is the ad joint of U, obtained 
by transposing and then complex-conjugating U). As in the 
case of classical computing, where there exists a universal gate 
(the combinations of which can be used to compute any 
computable function), namely, the NAND gate which results 
from performing an AND gate and then a NOT gate, in 
quantum computing it was shown [9] that any multiple qubit 
logic gate may be composed from a quantum CNOT gate 
(which operates on a multiple qubit by flipping or preserving 
the target bit given the state of the control bit, an operation 
analogous to the classical XOR, i.e., the exclusive OR gate) 
and single qubit gates. One feature of quantum gates that 
distinguishes them from classical gates is that they are 
reversible: the inverse of a unitary matrix is also a unitary 
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matrix, and thus a quantum gate can always be inverted by 
another quantum gate. 

 

 
 
 

 
Figure 2.  The CNOT Gate. 

Unitary gates manipulate the information stored in the 
quantum register, and in this sense ordinary (unitary) quantum 
evolution can be regarded as computation [10] showed how a 
small set of single-qubit gates and a two-qubit gate is universal, 
in the sense that a circuit combined from this set can 
approximate to arbitrary accuracy any unitary transformation of 
nqubits). In order to read the result of this computation, 
however, the quantum register must be measured. The 
measurement gate is a non-unitary gate that “collapses” the 
quantum superposition in the register onto one of its terms with 
the corresponding probability. Usually this measurement is 
done in the computational basis, but since quantum mechanics 
allows one to express an arbitrary state as a linear combination 
of basis states, provided that the states are orthonormal (a 
condition that ensures normalization) one can in principle 
measure the register in any arbitrary orthonormal basis. This, 
however, doesn't mean that measurements in different bases are 
efficiently equivalent. Indeed, one of the difficulties in 
constructing efficient quantum algorithms stems exactly from 
the fact that measurement collapses the state, and some 
measurements are much more complicated than others. 

D. Quantum Circuits: 
Quantum circuits are similar to classical computer circuits 

in that they consist of wires and logical gates. The wires are 
used to carry the information, while the gates manipulate it 
(note that the wires do not correspond to physical wires; they 
may correspond to a physical particle, a photon, moving from 
one location to another in space, or even to time-evolution). 
Conventionally, the input of the quantum circuit is assumed to 
be a computational basis state, usually the state consisting of all  
0 . The output state of the circuit is then measured in the 
computational basis, or in any other arbitrary orthonormal 
basis. The first quantum algorithms (i.e. Deutsch-Jozsa, Simon, 
Shor and Grover) were constructed in this paradigm. 

E. Model quantum computer and quantum code: 
In this section we describe a simple model for a quantum 

computer based on a classical computer instructing a machine 
to manipulate a set of spins. This model has some intrinsic 
limitations which make designing algorithms in a high-level 
language somewhat tricky. We discuss some of the rules for 

writing such quantum computer code as a high-level language 
and give an example. 

Consider the following model for the operation of a 
quantum computer: Several thousand spin- particles (or two-
level systems) are initially in some well defined state, such as 
spin-down. A classical machine takes single spins or pairs of 
spins and entangles them (performing an elementary one-bit 
operation   or the two-bit XOR gate); see Figure 3 a, b and c. 
These stages are repeated on different pairs of spins according 
to the instructions of a conventional computer program. Since 
the spins are entangled, we must not look at the spins at 
intermediate stages: We must keep the quantum superposition 
intact. Furthermore, nothing else may interfere with the spins 
which could destroy their orientation or interrupt their unitary 
evolution. Once this well-defined cycle of manipulation is 
complete the orientations of the spins are measured (Fig. 3d). 
This set of measured orientations is the output of the 
computation. 

 
 

Figure 3.  Model quantum computer 

Figure 3 Model quantum computers as pictured by Shor 
[10]. Initially all particles are spin-down. Stage a) a classical 
machine takes a single or pair of spins and in stage b) it 
performs a selected one-bit or two-bit operation; in stage c) the 
``entangled'' particles are returned to their original locations. 
These three stages are repeated many times in accord with the 
instructions given by an ordinary classical computer. When this 
cycle is complete stage d) consists of measuring the state of the 
particles (leaving them in some particular bit-string); this bit-
string is the result of the computation. 

Given this paradigm for a quantum computer, what might 
its high-level language (its computer code) look like? The most 
serious difficulty that must be dealt with is that the quantum 
information is manipulated by a conventional computer in a 
completely blind manner---without any access to the values of 
this quantum information. This means that the program cannot 
utilize ``shortcuts'' conditional on the value of a quantum 
variable (or register or bit). For example, loops must be iterated 
through exactly the same number of times independent of the 
values of the quantum variables. Similarly, conditional 
branches around large pieces of code must be broken down into 
repeated conditions for each step. In addition, each instruction 
performed upon the quantum bits must be logically reversible. 
Thus, ordinary assignments of a value to a variable, such as 
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| a  = n, are not legal and must instead be performed as 
increments on an initially zeroed variable, such as | a  = | a
 +n. 

An example of such code that could run on this machine 
might look like this : 

       do 10 k = 1, worstdiv 
       | a   = | a   - n 
       if ( | a   >= 0 ) | q   = | q   + 1 
10 continue 
       do 20 k = 1, worstdiv 
       if ( k > | q   ) | a   = | a   + n 
20 continue 
This code fragment could be used to calculate the quotient 

and the remainder, placed in  and , respectively, for the 
division of  by n; the constant worstdiv is the worst-case 

number of times the loop must be traversed. Here  is initially 
zero. Each instruction here is either a conventional computer 
instruction or one involving some quantum variables. The 
former are direct instructions for the external computer, while 
the latter must be interpreted as a sequence of manipulations to 
be performed upon the quantum bits. As it stands, this code 
is not reversible (neither is it very efficient), e.g., the 
label 10 gives no specification of which routes might be used to 
get to it. It can, however, be easily rewritten. 

III. QUANTUM ALGORITHM 

Algorithm design is a highly complicated task, and in 
quantum computing it becomes even more complicated due to 
the attempts to harness quantum mechanical features to reduce 
the complexity of computational problems and to “speed-up” 
computation. Before attacking this problem, we should first 
convince ourselves that quantum computers can be harnessed 
to perform standard, classical, computation without any 
“speed-up” 

Shor's algorithm [08], [09], [10] exploits the ingenious 
number theoretic argument that two prime factors p, q of a 
positive integer N=pq can be found by determining the period 
of a function ƒ(x) = yx mod N, for any y < N which has no 
common factors with N other than 1 (Nielsen and Chuang 
2000, App. 4). The period r of ƒ(x) depends on y and N. Once 
one knows the period, one can factor N if r is even and yr/2 ≠ 
−1 mod N, which will be jointly the case with probability 
greater than 1/2 for any y chosen randomly (if not, one chooses 
another value of y and tries again). The factors of N are the 
greatest common divisors of yr/2 ± 1 and N, which can be 
found in polynomial time using the well known Euclidean 
algorithm. In other words, Shor's remarkable result rests on the 
discovery that the problem of factoring reduces to the problem 
of finding the period of a certain periodic function ƒ: Zn → 
ZN, where Zn is the additive group of integers mod n (Note 
that ƒ(x) = yx mod N so that ƒ(x+r) = ƒ(x) if x+r ≤ n . The 
function is periodic if r divides n exactly, otherwise it is almost 
periodic). That this problem can be solved efficiently by a 
quantum computer is demonstrated with Simon's oracle. 

Shor's result is the most dramatic example so far of 
quantum “speed-up” of computation, notwithstanding the fact 
that factoring is believed to be only in NP and not in NP-

complete. To verify whether n is prime takes a number of steps 
which is a polynomial in log2n (the binary encoding of a 
natural number n requires log2n resources). But nobody knows 
how to factor numbers into primes in polynomial time, not 
even on a probabilistic Turing machine, and the best classical 
algorithms we have for this problem are sub-exponential. This 
is yet another open problem in the theory of computational 
complexity. Modern cryptography and Internet security 
protocols such public key and electronic signature are based on 
these facts [10] .It is easy to find large prime numbers fast and 
it is hard to factor large composite numbers in any reasonable 
amount of time. The discovery that quantum computers can 
solve factoring in polynomial time has had, therefore, a 
dramatic effect. The implementation of the algorithm on a 
physical machine would have economic, as well as scientific 
consequences. 

IV. ADVANTAGES 

There are several reasons that researchers are working so 
hard to develop a practical quantum computer. First, atoms 
change energy states very quickly -- much more quickly than 
even the fastest computer processors. Next, given the right type 
of problem, each qubit can take the place of an entire processor 
-- meaning that 1,000 ions of say, barium, could take the place 
of a 1,000-processor computer. The key is finding the sort of 
problem a quantum computer is able to solve. 

If functional quantum computers can be built, they will be 
valuable in factoring large numbers, and therefore extremely 
useful for decoding and encoding secret information. If one 
were to be built today, no information on the Internet would be 
safe. Our current methods of encryption are simple compared 
to the complicated methods possible in quantum computers. 
Quantum computers could also be used to search large 
databases in a fraction of the time that it would take a 
conventional computer. 

It has been shown in theory that a quantum computer will 
be able to perform any task that a classical computer can. 
However, this does not necessarily mean that a quantum 
computer will outperform a classical computer for all types of 
task. If we use our classical algorithms on a quantum computer, 
it will simply perform the calculation in a similar manner to a 
classical computer. In order for a quantum computer to show 
its superiority it needs to use new algorithms which can exploit 
the phenomenon of quantum parallelism. 

The implications of the theories involved in quantum 
computation reach further than just making faster computers. 
Some of the applications for which they can be used are  

A. Quantum Communication: 
Quantum communication systems allow a sender and 

receiver to agree on a code without ever meeting in person. 
The uncertainty principle, an inescapable property of the 
quantum world, ensures that if an eavesdropper tries to 
monitor the signal in transit it will be disturbed in such a way 
that the sender and receiver are alerted. 

B. Quantum Cryptography: 
The expected capabilities of quantum computation promise 

great improvements in the world of cryptography. Ironically 
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the same technology also poses current cryptography 
techniques a world of problems. They will create the ability to 
break the RSA coding system and this will render almost all 
current channels of communication insecure. 

C. Artificial Intelligence: 
The theories of quantum computation suggest that every 

physical object, even the universe, is in some sense a quantum 
computer. As Turing's work says that all computers are 
functionally equivalent, computers should be able to model 
every physical process. Ultimately this suggests that computers 
will be capable of simulating conscious rational thought. And a 
quantum computer will be the key to achieving true artificial 
intelligence. 

V. CONCLUSION 

Experimental and theoretical research in quantum 
computation is accelerating world-wide. New technologies for 
realizing quantum computers are being proposed, and new 
types of quantum computation with various advantages over 
classical computation are continually being discovered and 
analyzed, and we believe some of them will bear technological 
fruit. From a fundamental standpoint, however, it does not 
matter how useful quantum computation turns out to be, nor 
does it matter whether we build the first quantum computer 
tomorrow, next year or centuries from now. The quantum 
theory of computation must in any case be an integral part of 
the world view of anyone who seeks a fundamental 
understanding of the quantum theory and the processing of 
information. 
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