
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 75

ISSN No. 0976-5697

LFNRU: A New Hybridized Page Replacement Algorithm for Efficient Memory
Management and its Performance Analysis

H. S. Behera
Department of Computer Science & Engineering,

 Veer Surendra Sai University of Technology (VSSUT)
 Burla, Sambalpur, Orissa, India, 768018

hsbehera_india@gmail.com
 Burla, Sambalpur, Orissa, India, 768018

B.Namadipta Patro
Department of Computer Science & Engineering,

 Veer Surendra Sai University of Technology (VSSUT)

namadipta.patro@gmail.com

Ishita Bhuyan

ishitabhuyan@gmail.com

Abstract: This paper introduces a new dimension to the existing page replacement algorithms. Combining the LEAST FREQUENTLY USED (LFU)
and LEAST RECENTLY USED (LRU) paging algorithms we hereby present a hybridized algorithm that effectively reduces the number of page
faults incurred in the former two algorithms. Basically the idea is to compare the counter values and replace the page with a lower counter count and
in cases of similar counts the page that has the lesser recent reference is evicted. As we demonstrate with simulation experiments, the “LFNRU-Least
Frequently Not Recently Used” algorithm surpasses the performance and efficiency of LFU, LRU, LRU-K AND RLRU page replacement
algorithms. Furthermore, the LFNRU algorithm adapts in real time to changing patterns of access.

Department of Computer Science & Engineering,

 Veer Surendra Sai University of Technology (VSSUT)
 Burla, Sambalpur, Orissa, India, 768018

Keywords: virtual memory, buffer, frame size, LFU, LRU

I. INTRODUCTION

For computer operating systems using paging for virtual
memory management, paging algorithms decide which
memory pages are to be paged out when a page of memory
needs to be allocated. Paging happens due to the occurrence
of page fault and a condition in which free pages are unable to
satisfy the allocation, either because there are none, or because
the number of free pages is lowers than some benchmark.

A. Problem Definition:

To address these issues elaborately and coherently we have
organized the page into five different sections which separately
attends to a distinct issue. We start up with the problem
definition that familiarizes us with sub-divisions of memory.
The next section covers all the paging algorithms invented till
date. Next we have a section named related works that throws
light on all the significant research done in this field so far.
Then comes the main body of the project that encompasses our
entire work. Here we present our algorithm and introduce
LFNRU- least frequently and not recently used algorithm. We
proceed further by placing forth tabulation and graphs that
illustrate the performance of the algorithms. We have taken
meticulously taken different cases and strings of varied lengths
to further prove our point. We finally wind up by putting forth
a comparative analysis discussing the aspects of each and every
paging algorithm.

There are two levels of memory. Firstly, the fast access
device. Secondly, the larger, slower, backing store. These
levels are divided into page frames. If a program references a

page in the second level, a page fault is encountered. So, this
page is to be brought into the first level and a page from the
first level is to be transferred to the second level. This process
is known as page replacement. It is implemented by
algorithms called page replacement algorithms.

The objective of every page replacement algorithm is to
minimize the number of page faults encountered and reduce
fragmentation.

B. Well Known Paging Algorithms:

a. Least Freqeuntly Used(Lfu):-
LFU paging algorithm produces the page in cache that has

the least references in the past. However, the demerit in this
case is that it is unable to adapt rapidly to fluctuating patterns
in input. It has an improved performance over LRU. LFU
defines a frequency of use associated with each page. The
frequency implementation starts at the beginning of the page
reference string and continuous to reckon the frequency over
an ever increasing interval. Basically, reactions to locality
transitions will be extremely slow. The variant of LFU
accounts for frequency count of a page since it was last loaded
rather than since the beginning of the page reference string.

b. Least Recently Used(Lru):-
LRU algorithm swaps the page in cache that had been last

referenced. Here the disadvantage is that the algorithm does
not distinguish between pages that are requested for very
frequently and those that are not. LRU is unable to
differentiate pages based on frequency. . The Self-correcting

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,75-82

© 2010, IJARCS All Rights Reserved 76

LRU tries to improvise the replacement policy in the cache.
The three major mistakes made by LRU are:
a) Bypass block: Many blocks are accessed only once, at

the time of the miss and then they are not accessed again
until they leave the cache. Such blocks are called Bypass
block.

b) Deadlock: Blocks which are referenced more than once
and then are not referenced are called Dead block.

c) Live block: When a block is accessed right after it was
replaced is called live block.

LRU replaces a page that has not been referenced for
maximum time. Most of the paging algorithms use the past as
the prediction of the future to choose the page to be swapped.
To improvise LRU an approach has been made to adaptive
page replacement algorithm like LRU-WAR and LRU-
Warlocks. The LRU-WAR is based on the maximum working
set size between consecutive page faults. But it falters in a
global memory management system. In LRU-Warlocks one
part of memory is reserved for most referenced pages and
other part keeps the original LRU-WAR management.

c. LRU-K:-
This algorithm looks at the kth

d. RLRU:-

 latest request in the cache.

Retrospective least frequently used algorithm which
chooses from pages that are unmarked. A page is marked in
two cases:
-RLRU has a fault
-RLRU has a hit and the page is different from pages of
previous request.

e. Optimal:-
When a page is required to be swapped in, the operating

system swaps the page whose next use will occur after the
longest time. This algorithm has not found practical
implementation in the general purpose operating system since
it is insurmountable to compute reliably the time it will take
before a page is going to be used, exempting cases when all
software that will run on a system is either known beforehand
and is necessary to the static analysis of its memory reference
patterns, or only a class of applications allowing run-time
analysis. Inspire of this limitation, algorithms exist

f. Not Recently Used:-

that can
offer nearly optimal performance. The operating system keeps
track of all pages referenced by the program, and uses that
data to decide which pages to swap in and out on upcoming
runs. This algorithm can offer near-optimal performance, but
not on the first run of a program, and only if the program's
memory reference pattern is relatively consistent each time it
runs.

The not recently used (NRU) page replacement algorithm
is that paging algorithm which favors keeping pages in cache
that have been recently used. This algorithm works on the
principle that when a page is used, a referenced bit is set for
that page, notching it as referenced. Accordingly, when a page
is modified, a modified bit is set. The setting of the bits is
usually done by the hardware.

a) Class 0: Not referenced, not modified

 When a page needs to be

replaced, the operating system divides the pages into four
classes:

b) Class 1: Not referenced, modified
c) Class 2: Referenced, not modified
d) Class 3: referenced, modified

g. FIFO:-
This algorithm uses the first-cum-first-serve base. It can be

implemented using either a clock or a FIFO queue to replace
the oldest page.

h. Second Chance:-
Second chance algorithm is an improved form of FIFO

page replacement algorithm. It notches a reference bit with
each page. The page whose reference bit is not set is selected
for replacement. A page whose reference bit is set is cleared
and then inserted at the tail of the queue.

i. Clock:-
It marks the oldest page with a hand. On the occurrence of

a page fault, the reference bits of the page pointed by the hand
are checked. If it 0, the page is selected. Else it is cleared.
Subsequently, the clock hand is increased and the process is
iterated until a page is replaced.

j. Random:-
Randomly, a page is chosen and replaced. This does away

with the overhead cost of tracking page references. Generally
it furnishes better results than FIFO, and in cases of looping
memory references it is better than LRU, although in practice
LRU performs better . OS/390 uses global LRU
approximation and falls back to random replacement when
LRU performance degenerates and the

k. Not Frequently Used:-

Intel i860 processor
used a random replacement policy.

The NFU paging algorithm uses a counter and every page
has its own counter which is initially set to 0. At every clock
interval, all pages that have been referenced within that clock
interval will have their counter raised by 1. The counters keep
track of how frequently a page is being used. Hence, the page
with the lowest counter can be swapped out. The biggest
problem with Not Frequently Used is that it keeps track of the
frequency of use rather than focusing on the time span of use.
For example, in case of a multi-pass compiler, pages with the
highest frequency in the first pass, but are not need in the
second pass will be prioritized over pages which have
comparatively lower frequency count in the second pass. This
results in poor performance. There are certain other cases
where NFU performs in the same manner like in an OS boot-
up. The NFU paging algorithm produces fewer page faults
than the LRU paging algorithm when the page table contains
null pointer values.

l. Most Frequently Used:-
It is based on the concept that the page with the smallest

count is yet to be used.

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 75-82

© 2010, IJARCS All Rights Reserved 77

m. Aging:-
It accounts for the use time span . The reference counter on

a page is shifted right before adding the reference bit to the
left of that binary number. This is done without basing on
time.

n. Working Set:-
This algorithm focuses on the assumption of locality. It is a

set of pages expected to be used by that process during certain
time interval.

II. RELETAED WORK

The paper by Elizabeth J. O’Neil and Patrick E. O’Neil
and Gerhard Weikum presents a revised approach to database
disk buffering namely the LRU-K method. The LRU-K keeps
track of the times of the last K references to popular database
pages. The information statistically estimates the inter-arrival
times of references on a page by page basis. The
understanding was further enhanced by following the
manuscript of R.I.Phelps and L.C.Thomas.[1][2]

“An optimal performance in self-organizing paging
algorithms” by R.I.Phelps and L.C.Thomas illustrates that an
optimal self organizing paging algorithm can efficiently
reduce the number of page faults and thereby minimize the
cost by taking into consideration the probable posterior
reference. [3]

“LRU-K page replacement algorithm” by Prof. Shahram
presents several motivations and alternatives to LRU-K. It also
takes into account its design and implementation. [4]

Silberschatz, Galvin and Gagne, “Operating System
Concepts” has been referred to at each and every step of the
course of the project for clarification of basic fundamentals.
[5]

III. OUR CONTRIBUTION

Having keenly analyzed the existing page replacement
algorithms, considering the loop falls in each of the above
mentioned algorithms, we design an algorithm that is a
conjunction of LRU and LFU page replacement algorithms.

A. Proposed Algorithm:
We take an array where the least occurrence will be stored

and the page that satisfies the following properties will be
replaced:-
-page with the least counter value
-page that stays for the longest period of time

The pseudo code of the proposed algorithm along with the
corresponding flowchart displaying accurately the flow of
control for the entire program is shown.

B. Pseudo Code Of The Proposedalgorithm:

Step: 1> Enter the Reference String “S” and its length
“L” and the Frame Size “F”.Initialise the buffer.
Step: 2>repeat step: 3, 4 for L times.
Step: 3>select a page from the string.
Step: 4>

If (page is already in the Frame) then
{

 It’s a Hit.
If buffer is full go to step 5.
Else insert in to buffer.

 }
 Else
 {
 /*page is not present in the Frame*/
 /*check the least frequently used page*/

 If (there is more than one least frequently
used page) {

 Replace the page which is not in the buffer.
If buffer is full go to step 5.
Else insert in to buffer.

 }
 Else if (there are more than one least
frequently used pages and both are in buffer)
 {

Replace the page which stays in buffer for a
long time.

 If buffer is full go to step 5.
 Else insert in to buffer.
 }
 Else
 {

 Replace the least frequently used page.
If buffer is full go to step 5.
Else insert in to buffer.

 }
 }

Step: 5>replace the page which comes to the buffer
first.
 Return;
Step: 6>exit.

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,75-82

© 2010, IJARCS All Rights Reserved 78

C. Flow Chart Of The Proposed Algorithm:

yes

yes

no

yes

no

no

D. An Experimental Analysis Of Proposed Algorithm:

Extensively, computing for several paging algorithms

taking strings and frames of different sizes, we get the
following output.

Table: 1 Using Frame Size 3

Input String

LFU LRU LFNRU

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

1 3 1 2 3 4 5 1 2
3 4 5 1 2 1 1 11 68.75 13 81.25 9 56.25

1 1 2 3 1 7 6 7 6
7 2 1 3 2 7 6 11 68.75 10 62.5 9 56.25

1 2 3 4 5 6 7 8 7
8 5 6 7 8 5 6 1 2
3 4 5 6 7 8 1 2 5
6 5 6

27 90 28 93.33 22 73.333

1 2 3 4 5 6 7 8 1
7 8 3 5 6 1 2 7 1
8 5 6 8 7 1 2 3 4
5 6 3

25 83.33 26 86.66 24 80

7 0 1 2 0 3 0 4 2
3 0 3 2 1 2 0 1 7
0 1 3 0 32 1 2 0
1 0 2

19 63.33 16 53.33 13 43.333

The above tabular representation provides the following

results. We realize that LFNRU gives the best results.
Taking the string 1312345123451211 in a frame size of 3
LFNRU outperformed by LRU and LFU.
Taking the string 1 1 2 3 1 7 6 7 6 7 2 1 3 2 7 6 in a frame size
of 3LFNRU outperforms LFU and LRU.

Start

Enter the Reference String “S”
and its length “L” and the

Frame Size “F”.

Select a Page From the string.

If it is
present in
the frame

It’s a Page
Hit.

Check
whether there
are more than

one least
frequently

used pages.

Replace The Least
Frequently used page

It’s a Page Fault.

Replace the page which has least
frequency value and also not

present in the buffer.

Is there
more page

in the string

Stop

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 75-82

© 2010, IJARCS All Rights Reserved 79

Taking the strings1 2 3 4 5 6 7 8 7 8 5 6 7 8 5 6 1 2 3 4 5 6 7 8
1 2 5 6 5 6 in a frame size of 3 LFNRU outperforms LFU and
LRU.
Taking the string 1 2 3 4 5 6 7 8 1 7 8 3 5 6 1 2 7 1 8 5 6 8 7 1
2 3 4 5 6 3in a frame size of 3 LFNRU outperforms LFU and
LRU.
Taking the string 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 3 0 32 1
2 0 1 0 2 LFNRU outperforms LFU and LRU.

Figure: 1 Graphical representation of page hit using frame

size 3.

Accordingly, for clarity we express the performance of
LFU, LRU and LFNRU using linear graph. The graph
explains the efficiency comparison of the three paging
algorithms. With the exception of few cases where LFNRU is
outperformed by LRU, in the remaining cases we notice that if
not the best, LFNRU and LFU perform equivalently well.
However we realize that in 5 cases LFNRU outperforms LFU
and LRU.

Figure: 2 Graphical representation of page fault t using

frame size 3.

The adjacent bar graph shows the comparative behavior of
the standard paging algorithms of LFU and LRU with
LFNRU. It is clearly evident that taking a frame size of 3, in
certain cases LFU, LRU and LFNRU perform with similar
efficiency. In certain other cases we notice that even though

LRU outperforms LFNRU, it performs as well as LFU. We
also notice that in several cases LFNRU gives the best results.

Figure: 3 Graphical representation of page fault rate using

frame size 3.

The above graph shows the page fault rate encountered in
each case. Page fault rate is defined as the rate of page faults.
It can be said to be the number of miss per number of pages.

 =>PAGE FAULT RATE = (NUMBER OF MISS) /
(NUMBER OF PAGES)

 =>PAGE FAULT RATIO= [(NUMBER OF PAGE
FAULT)/(NUMBER OF PAGES)]*100

So as is evident, lower the page fault rate better the
algorithm. In the above graph we can clearly see that though
in the case of the first three strings the performances remain
equal, in the subsequent cases LFNRU outperforms the
performances of LFU and LRU.

Table: 2 Using Frame Size 4

Input String

LFU LRU LFNRU

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

1 3 1 2 3 4 5 1 2 3
4 5 1 2 1 1 8 50 12 75 8 50

1 1 2 3 1 7 6 7 6 7
2 1 3 2 7 6 8 50 8 50 7 43.75

1 2 3 4 5 6 7 8 7 8
5 6 7 8 5 6 1 2 3 4
5 6 7 8 1 2 5 6 5 6

26 86.66 20 66.66 15 50

1 2 3 4 5 6 7 8 1 7
8 3 5 6 1 2 7 1 8 5
6 8 7 1 2 3 4 5 6 3

24 80 25 83.33 22 73.33

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,75-82

© 2010, IJARCS All Rights Reserved 80

7 0 1 2 0 3 0 4 2 3
0 3 2 1 2 0 1 7 0 1
3 0 32 1 2 0 1 0 2

10 33.33 12 40 9 30

The above tabular representation provides the following
results. We realize that LFNRU gives the best results.
Taking the string 1312345123451211 in a frame size of 4
LFNRU outperformed by LRU and LFU.
Taking the string 1 1 2 3 1 7 6 7 6 7 2 1 3 2 7 6 in a frame size
of 4 LFNRU outperforms LFU and LRU.
Taking the strings1 2 3 4 5 6 7 8 7 8 5 6 7 8 5 6 1 2 3 4 5 6 7 8
1 2 5 6 5 6 in a frame size of 4 LFNRU outperforms LFU and
LRU.
Taking the string 1 2 3 4 5 6 7 8 1 7 8 3 5 6 1 2 7 1 8 5 6 8 7 1
2 3 4 5 6 3in a frame size of 4 LFNRU outperforms LFU and
LRU.
Taking the string 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 3 0 32 1
2 0 1 0 2 LFNRU outperforms LFU and LRU.

Figure: 4 Graphical representation of page fault using

frame size 4.

The adjacent bar graph shows the comparative behavior of
the standard paging algorithms of LFU and LRU with
LFNRU. It is clearly evident that taking a frame size of 4, in
certain cases LFU, LRU and LFNRU perform with similar
efficiency. In certain other cases we notice that even though
LRU outperforms LFNRU, it performs as well as LFU. We
also notice that in several cases LFNRU gives the best results

Figure: 5 Graphical representation of page fault rate using

frame size 4.

The above graph shows the page fault rate encountered in
each case. Page fault rate is defined as the rate of page faults.
It can be said to be the number of miss per number of pages.

 =>PAGE FAULT RATE = (NUMBER OF MISS) /
(NUMBER OF PAGES)
 =>PAGE FAULT RATIO= [(NUMBER OF PAGE
FAULT)/(NUMBER OF PAGES)]*100

So as is evident, lower the page fault rate better the
algorithm. In the above graph we can clearly see that though
in the case of the first three strings the performances remain
equal, in the subsequent cases LFNRU outperforms the
performances of LFU and LRU.

Figure: 6 Graphical representation of page hit using frame

size 4.

Accordingly, for clarity we express the performance of
LFU, LRU and LFNRU using linear graph. The graph
explains the efficiency comparison of the three paging
algorithms. With the exception of few cases where LFNRU is
outperformed by LRU, in the remaining cases we notice that if
not the best, LFNRU and LFU perform equivalently well.
However we realize that in 5 cases LFNRU outperforms LFU
and LRU.

Table: 3 Using Frame Size 5

Input String

LFU LRU LFNRU

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

Page
fault

Page
fault
rate

1 3 1 2 3 4 5 1 2 3
4 5 1 2 1 1 5 31.25 5 31.25 4 31.25

1 1 2 3 1 7 6 7 6 7
2 1 3 2 7 6 5 31.25 5 31.25 4 31.25

1 2 3 4 5 6 7 8 7 8
5 6 7 8 5 6 1 2 3 4
5 6 7 8 1 2 5 6 5 6

20 66.66 20 66.66 14 46.67

1 2 3 4 5 6 7 8 1 7
8 3 5 6 1 2 7 1 8 5
6 8 7 1 2 3 4 5 6 3

21 70 22 73.33 19 63.33

7 0 1 2 0 3 0 4 2 3
0 3 2 1 2 0 1 7 0 1
3 0 32 1 2 0 1 0 2

7 23.33 7 23.33 6 20

The above tabular representation provides the following
results. We realize that LFNRU gives the best results.

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 75-82

© 2010, IJARCS All Rights Reserved 81

a. Taking the string 1312345123451211 in a frame size
of 5 LFNRU outperformed by LRU and LFU.

b. Taking the string 1 1 2 3 1 7 6 7 6 7 2 1 3 2 7 6 in a
frame size of 5 LFNRU outperforms LFU and LRU.

c. Taking the strings1 2 3 4 5 6 7 8 7 8 5 6 7 8 5 6 1 2 3 4
5 6 7 8 1 2 5 6 5 6 in a frame size of 5 LFNRU
outperforms LFU and LRU.

d. Taking the string 1 2 3 4 5 6 7 8 1 7 8 3 5 6 1 2 7 1 8 5
6 8 7 1 2 3 4 5 6 3in a frame size of 5 LFNRU
outperforms LFU and LRU.

e. Taking the string 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
3 0 32 1 2 0 1 0 2 LFNRU outperforms LFU and LRU.

Figure: 7 Graphical representation of page fault using

frame size 5.

The adjacent bar graph shows the comparative behavior of
the standard paging algorithms of LFU and LRU with
LFNRU. It is clearly evident that taking a frame size of 4, in
certain cases LFU, LRU and LFNRU perform with similar
efficiency. In certain other cases we notice that even though
LRU outperforms LFNRU, it performs as well as LFU. We
also notice that in several cases LFNRU gives the best results.

Figure: 8 Graphical representation of page fault rate using

frame size 5.

The above graph shows the page fault rate encountered in
each case. Page fault rate is defined as the rate of page faults.
It can be said to be the number of miss per number of pages.

 =>PAGE FAULT RATE = (NUMBER OF MISS) /
(NUMBER OF PAGES)

=>PAGE FAULT RATIO= [(NUMBER OF PAGE
FAULT)/(NUMBER OF PAGES)]*100

So as is evident, lower the page fault rate better the
algorithm. In the above graph we can clearly see that though
in the case of the first three strings the performances remain
equal, in the subsequent cases LFNRU outperforms the
performances of LFU and LRU.

Figure: 9 Graphical representation of page hit using frame

size 4.

Accordingly, for clarity we express the performance of
LFU, LRU and LFNRU using linear graph. The graph
explains the efficiency comparison of the three paging
algorithms. With the exception of few cases where LFNRU is
outperformed by LRU, in the remaining cases we notice that if
not the best, LFNRU and LFU perform equivalently well.
However we realize that in 5 cases LFNRU outperforms LFU
and LRU.

Table: 4 Performance Analysis Table

NAME PAGE REPLACEMENT ALGORITHM

1.LFU Crude and hence non-adaptive

2.LRU Rules out frequency as a parameter and suffers
from bypass, livestock and deadlock issues.

3.LRU-k Excessively parameterizes on time aspect.

4.RLRU It shows resistance to sequential scans.

7.FIFO Suffers from starvation problem.

8.LFNRU Shows promising results compared to standard
algorithms.

IV. CONCLUSION

We have compared the performance and efficiency of LFU,
LRU and LFNRU page replacement algorithms. We have
experimentally verified their performance and noted their
performances graphically. We have seen that taking different

H. S. Behera et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,75-82

© 2010, IJARCS All Rights Reserved 82

cases, with different strings with varied frame sizes we have
encountered few cases. Firstly, in all cases with frame size 3
and 4 LFNRU outperforms LRU and LFU perform the same.

Secondly, increase in buffer size renders better
performance. Illustrating the organisation of the paper, we
begin with the introduction to all the paging algorithms
developed till date. Then we begin the computation of the
efficiency of LFU, LRU and LFNRU.

We have also realized in the due course of preparing this
manuscript that this algorithm can be utilized in improving the
performance of search engines and browsers. Further
extensions of this project can be to implement the algorithm in
real life practical examples.

V. REFERENCES

[1] Elizabeth J. O’Neil and Patrick E. O’Neil and Gerhard
Weikum, “AN Optimality Proof of LRU-K Page
Replacement Algorithm”, August 1998,pp.1-6, in press.

[2] R.I.Phelps and L.C.Thomas “AN optimal performance in
self-organizing paging algorithms”, pp.1–9 in press.

[3] Prof. Shahram Ghandeharizahde CSCI 485 lecture notes on
“LRU-K page replacement algorithm” presentation in press.

[4] Silberschatz, Galvin and Gagne,“Operating System
Concepts”,8th

[5] Wayne A. Wong and Jean –Loup Baer, “MODIFIED LRU
Policies for Improving second level Cache Behavior”,pp.-1-
4,pp-9-12 in press.

 edition, vol 4, 2010 pp.339-340.

	INTRODUCTION
	Problem Definition:
	Well Known Paging Algorithms:
	Least Freqeuntly Used(Lfu):-
	LFU paging algorithm produces the page in cache that has the least references in the past. However, the demerit in this case is that it is unable to adapt rapidly to fluctuating patterns in input. It has an improved performance over LRU. LFU defines a...
	Least Recently Used(Lru):-
	LRU-K:-
	RLRU:-
	Optimal:-
	Not Recently Used:-
	FIFO:-
	This algorithm uses the first-cum-first-serve base. It can be implemented using either a clock or a FIFO queue to replace the oldest page.
	Second Chance:-
	Second chance algorithm is an improved form of FIFO page replacement algorithm. It notches a reference bit with each page. The page whose reference bit is not set is selected for replacement. A page whose reference bit is set is cleared and then inser...
	Clock:-
	It marks the oldest page with a hand. On the occurrence of a page fault, the reference bits of the page pointed by the hand are checked. If it 0, the page is selected. Else it is cleared. Subsequently, the clock hand is increased and the process is it...
	Random:-
	Randomly, a page is chosen and replaced.1T This does away with the overhead cost of tracking page references. Generally it furnishes better results than FIFO, and in cases of looping memory references it is better than LRU, although in practice LRU pe...
	Not Frequently Used:-
	Most Frequently Used:-
	Aging:-
	It accounts for the use time span . The reference counter on a page is shifted right before adding the reference bit to the left of that binary number. This is done without basing on time.
	Working Set:-
	This algorithm focuses on the assumption of locality. It is a set of pages expected to be used by that process during certain time interval.

	RELETAED WORK
	OUR CONTRIBUTION
	Proposed Algorithm:
	Pseudo Code Of The Proposedalgorithm:
	Flow Chart Of The Proposed Algorithm:
	An Experimental Analysis Of Proposed Algorithm:
	The above tabular representation provides the following results. We realize that LFNRU gives the best results.
	The above tabular representation provides the following results. We realize that LFNRU gives the best results.
	The above tabular representation provides the following results. We realize that LFNRU gives the best results.

	CONCLUSION
	REFERENCES

