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Abstract: This paper explain a different type process for absolute exponential stability (AEST) of a group of continuous time recurrent neural 
networks with locally Lipschitz continuous and monotone non decreasing activation function. The result extends and improves the existing the 
analysis of absolute stability (ABST) and absolute exponential stability (AEST). 
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I. INTRODUCTION  

The main force lies in information that an absolute stability 
(ABST) or absolutely exponential stability (AEST) neural 
network can meet globally asymptotically to a single 
equilibrium with any activation function in a proper given 
group and any other network parameters. This type neural 
network property is used for solving many optimization 
problems. The optimization neural networks are devoid of the 
hollow suboptimal answer for any variety of the activation 
function. 

A quantitative analysis for globally exponentially stability 
(GES) [1]-[2] known the union performances of neural 
network. This method appears at a solution with a specified 
accuracy. 

ABST or AEST discover for continuous time recurrent 
neural networks. There researchers have to restrain the 
connection weight matrix and activation function of neural 
network. The group of sigmoid activation function proved 
symmetric or non inhibitory lateral connection weight matrix 
of neural network model. The necessary and sufficient 
condition of this model  for ABST neural network [3] and[4]. 
The ABST results are extended to the AEST ones in [5] and 
[6] respectively. In inference is raised [7]. The group of 
partially Lipschitz continuous and monotone non decreasing 
activation function for current AEST result is given is [8].  

Here we describe with AEST of continuous time recurrent 
neural network with locally Lipschitz continuous and 
monotone non decreasing activation function. These type of 
result expand and improve the presented ABST with AEST 
ones in the literature 
 

 

II. PERLIMINARIES 

Consider group of continuous time recurrent neural 
network model as follows   

 0)              (1)          
 

(0)               (2)   
Where 

,  
 is the state vector, ,  

, is diagonal matrix with dij 
>0  is connection 
weight 
matrix

 
is a input vector and, 

 is a nonlinear vector valued activation function from Rn to Rn 
and Rm to Rm .  

In this paper let LL denote the Locally Lipschiz 
Continuous (l.l.c) and monotone non decreasing activation 
function that is for any     R there exit  0  

and a constant 0   (i=1,2,3…n), (j=1,2,3…m) such 
that      

 
 

           (3) 
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Let PL denote the group of partially Lipschiz continuous 
(p.l.c) and monotone non decreasing activation function [9] 
that is for  

 
 (j=1,2,3…m) such that  2 

 

    ) 
  

Let GL denote the group of globally Locally Lipschiz 
continuous (g.l.l.c) and monotone non decreasing activation 
function.  

Here As for connection between PL 
and LL, the presented continuous activation function in the 
literature being to LL but many not be PL such as 

 
 

III. MAIN RESULT 

This part will be prove that  is a sufficient 
condition for AEST of common neural network (1)-(2) with its 
activation function in LL. We proved and improve the existing 
result ABST and AEST.  

Theorem- The neural network (1)-(2) has a unique 
equilibrium continuous and monotone non decreasing 
activation function g any Rn and any positive diagonal 
matrix D if and only if  

 
Proof- The neural network (1)-(2) has a unique 

equilibrium  
 

Then the neural network (!)-(2) can be changed into  the 
following corresponding system with a unique equilibrium at z 
= 0. 

                
           (3) 

Where   

 
 
 

useful properties 
Property A: There exist positive function  
(j=1,2,3…m),and   such that  
 

                     (4)      

 
Property B: 

   
         

                                             (5) 
 

Where 
   

Is any given bounded interval  i = 1,2…n, j = 1,2…m. 
Property C: There exist positive constant 

 such that  

                      

                   

(6)   
where   is any given bounded  interval. 
 Property B as follows s2 ) is l.l.c and monotone non  

 
    

 

(7) 
Next by contradiction we will show that there exist a 

positive constant   such that    
                       

]   

j]  
(8)                     

Suppose (8)  does not hold. Then we may select six 
sequence }such that  

 
and  

 
 

 
   

] there must exist 
two subsequence of each part , 

   such that 
j]

 

 

 
 

 
 when  j*. in 

view  
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is true by nothing that (8) is equivalent to (5). 
Lemma 1 [ 11, Th.2] 
:  

 network (1)-(2) has a unique GAS equilibrium for x* 
and  

Theorem : If 0 then the neural network (1)-(2) 
with its activation function in the class of LL is AEST. 

Proof : We know that  we consider the 
equal model (3) only. In view of lemma 1, model (3)is GAS  
at and consequently there exist constant 

 0 such that 0, 
i=1,2……n, j=1,2……m,    According to properties B and we 
have (5) and (6) since D0 there exist a positive 
diagonal matrix  )   

 
such that 0.    Let   
then 2 we define a differentiable function  

(9) 
obviously  0 by [12], calculating  the time derivative 
v(z) beside the positive half trajectory of (3) give up. 

 
 

 
 

 
 

 
 

 
  
        
 

 

 
   

  
 

 

 

 
6]] 

 
Define continuous function 
 

    

  
Where 

m    
 Then terms of (6) we readily obtain 
 

 
 

 
 

 

 

 
 

 

 

                                     (11) 
 
Based on (10) it is seen that 

  

  
So from  (3) we have  
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 is x*, y* is a GES equilibrium of neural network (1). These 
resources that the neural network (1) with its activation 
function is the class of LL  is AEST the proof is complete. 

IV. CONCLUSION 

We have shown that Bidirectional associative neural 
network for group of continuous time recurrent neural network 
has a unique equilibrium point. Under certain on weight 
matrix this network with its activation functions on his AEST. 
This obtained AEST result actually improves for group of 
continuous time recurrent neural network literature. 
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