
��������	�
����	��������������

������������������������������������ ����!����"���������������

�##��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 307

ISSN No. 0976-5697

A novel method for semantic web services discovery

Kambiz Fakhr*

Maragheh Islamic Azad University

Tabriz, Iran
kambiz@fakhr.org

Dr.Saeid Parsa
Iran University of Science & Technology,

Tehran, Iran,

 parsa@iust.ac.ir

Abstract: The discovery of suitable web services for a given task is one of the major operations in SOA architecture, and researches are being

done to automate this step. For the large amount of available Web services that can be expected in real-world settings, the computational costs of

automated discovery based on semantic matchmaking become important. To make a discovery engine a reliable software component, we must

aim at minimizing both the mean and the variance of the duration of the discovery task. For this, we present an extension for discovery engines

in SWS environments that exploit structural knowledge and previous discovery results for reducing the search space of consequent discovery

operations. Our prototype implementation shows significant improvements when applied to the Stanford SWS Challenge scenario and dataset.

Keywords: Web services discovery; Semantic web services; Caching mechanism; SDC graph; BDI agents

I. INTRODUCTION

A Web service is a software system identified by a URI
whose public interface and bindings are defined and described
by XML. Its definition can be discovered by other software
systems. These systems may then interact with the Web service
in a manner prescribed by Internet protocols.

The problem of composing Web services can be reduced to
three fundamental problems: the first one is to make a plan that
describes how Web services interact and how the functionality
they offer can be integrated to provide a solution of the prob-
lem. The second problem is the discovery of the Web services
that perform the tasks required in the plan. The third problem is
the management of the interaction with those Web services.
Crucially, planning, discovery and interaction are strictly inter-
connected: a plan specifies the type of Web services to discov-
er, but it also depends on the Web services that are available.
Similarly, the interaction process depends on the specifics of
the plan, but the plan itself depends on the requirements of the
interaction.

Web service discovery defined as finding a suitable web
services for a given task, and it is one of the major operations in
service oriented architecture (SOA). Nowadays, important
works are done in the field semantic web service (SWS) for
discovering automatic web services that are mainly focused on
important and efficient retrieval of web services (e.g. [14, 11,
13, 9]). However, the improvement and computational perfor-
mance at SWS are neglected. According to increasing amount
of available web services in real world, and using of semantic
discovery engine for dynamic web service composition and
business process management, discovery engine would be
change to a bottleneck. So by increasing amount of web servic-
es, request for discovery engine will be increase.

The following characteristics for judging the computational
reliability of a discovery engine are taken into account: Effi-
ciency as the time required for finding a suitable web service,
Scalability as the ability to deal with a large search space of
available web services, and the stability as a low variance of
the execution time of several invocation of same service.

In this paper, we presented a method for dealing with above

mentioned cases and discovering of web services by the use of

caching and reasoning concepts. This paper presents a tech-

nique that addresses this challenge by adapting the concept of

caching to Web service discovery. It captures knowledge on

discovery results for generic descriptions of objectives to be

achieved, and exploits this for optimizing Web service discov-

ery for concrete requests at runtime.

The given method is called semantic Discovery Caching

(SDC). At the runtime, BDI reasoning engine activates the

agents and these agents classify the services according to their

quality. We used factors such as secure delivery of messages,

response time and security for distinction between services at

runtime. At the last step of discovery, we use the dynamic dis-

covery method mentioned in [21] for matchmaking in runtime.

Figure 1 shows the basic idea of this method by means of the

data flow graph. There are three major entities in this figure as

follow: web services, having formal description, goal templates

that describe the general goals that are stored in the system, and

goal instances that describe a real request by instantiating a

goal template with real inputs. Web services are discovered for

goal patterns in design time. The result is stored in a specific

knowledge structure, called SDC graph. At run time, a client

request formulated as a goal instance for witch suitable web

services need to be discovered. Due to the most usage of dis-

covery engine component by SOA applications, we tend to

optimize the discovery engine by using of SDC graph in order

to reduce the search space and minimize the number of neces-

sary matchmaking operations.

The rest of the paper is organized as follows: section 2

briefly describes the approaches for semantically discovering

web services ([17, 18]). Section 3 specifies the caching tech-

niques of semantic discovery. Section 4 describe reasoning

engine based on BDI agents, dynamic web service discovery

and composition them using of SDC graph for making inte-

grated discovery of the web services. Section 5 presents the

evaluation and discuses the relevance and specifics of our ap-

proaches. At last, section 6 concludes the paper. We use the

shipment scenario from the Stanford SWS Challenge as a run-

ning example, a widely recognized initiative for demonstration

and comparison of semantically enabled discovery techniques

(http://sws-challenge.org/wiki/index.php/Main_Page).

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 308

Figure 1 .DFD for semantic web services discovery

II. BASIS OF THE DISCOVERY FRAMEWORK

This section presents the next part of our approach and is
regarded as a basis for it. We have developed an intended me-
thod for semantic web services as promoted by the WSMO
framework [5]. In contrast to an invocation request for a Web
service, a goal describes a client objective with respect to the
problem that shall be solved while abstracting from technical
details on Web service invocation. The aim is to facilitate prob-
lem-oriented Web service usage: the client merely specifies the
objective to be achieved as a goal, and the system automatically
discovers, composes, and executes suitable Web services for
solving this [18].

The distinction of goal templates and goal instances allows
easing the goal formulation by clients, and it facilities the two-
phase Web service discovery as outlined above. For this, we
have defined a formal model that considers a state-based model
of the world that Web services operate in, and provide precise
definitions of goals, Web services, and the necessary mat-
chmaking techniques. We here recall the central aspects; the
full model is defined in [17].

A. Web Services, Goals, and Functional Descriptions

We consider functional aspects as the primary aspect for
discovery: if a Web service does not provide the functionality
for solving a goal, then it is not usable and other, non-
functional aspects are irrelevant. The relevant parts of goal and
Web service descriptions for discovery by Semantic mat-
chmaking are the formally described requested and the pro-
vided functionalities.

In our state-based model, a particular execution of a Web

service W denotes a sequence of states ()mSS ,....,0=τ , i.e. a

change of the world from a start state s0 to an end state sm. In
consequence, the overall functionality provided by W is the set

of all possible executions of W, denoted by{ }
Wτ . Analogous-

ly, we understand a particular solution of a goal as a sequence
of states from the initial state into a state of the world wherein
the objective is solved. A functional description D formally
describes the possible executions of a Web service -
respectively the possible solutions for a goal - with respect to

the start- and end states. We define D over a signature� , and

use ontology Ω as the background knowledge. D consists of a

set of input variables { }niiIN ,....,1= , a precondition
preφ that

constrains the possible start states, and an effect
effφ that con-

strains the possible end states. To properly describe the depen-
dency of the start- and end states, IN occur as free variables in

both
preφ and

effφ ; the predicate out denotes the outputs. The

formal meaning of D is defined as implication semantics be-
tween the precondition and the effect. We say that a Web ser-
vice W provides the functionality described by D, denoted

by DW =| , if and only if for all { }
Wττ ∈ holds that if

e
S

Pr

0 | φ= then
eff

mS φ=| . In order to deal with functional

descriptions in terms of model-theoretic semantics, we present

this as a FOL formula
Dφ of the form

effpre φφ � . Then,

DW =| is given if and only if every { }
Wττ ∈ is represented

by a � -interpretation that is a model of
Dφ . Analogously, the

functional description DG of a goal template G formally de-

scribes the set { }
Gτ as the state sequences that are possible

solutions for G. Goal templates are generic objective descrip-
tions that are kept in the system. At runtime, a concrete client
request is formulated as a goal instances that instantiates a goal
template with concrete inputs. We define a goal instance as a
pair () ()β,GGGI = with G as the corresponding goal tem-

plate, and an input binding { } uii n →...: 1β as a total function

that assigns objects of U to each IN -variable of DG. This β is

subsequently used to invoke a Web service in order to solve
GI(G). We say that GI(G) is a consistent instantiation of its
corresponding goal template, denoted by GGGI =|)(, if

GDφ is satisfying under the input binding β . A usable Web

service for GI (G) can only be found if this is given. Moreover,
it holds that { } () { }

GGGIGGIif ττ ⊆→=| .

Table�1 functional descriptions

Table 1 shows examples for functional descriptions in our
running example. Using classical first-order logic as the speci-
fication language, the preconditions define conditions on the
required inputs, and the effects state that the output is a ship-
ment order with respect to the input values1.

1 (a) We consider Web services to provide deterministic functionalities, i.e.

that the end-state of an execution is completely dependent on the start-state

and the provided inputs; this is a pre-requisite for precise discovery by seman-

tic matchmaking.

 (b) We consider all functional descriptions D to be consistent, i.e. that
Dφ

is satisfying under an input binding β . Otherwise, a Web service W |= D

Web Service W

"shipment in Iran , max 50 kg"

Goal Template G

"ship a package of any

weight in Asia"
ontologyshipment &location :Ω

?w}?p,?r,{?s, : IN
Iran) in(?s, ^ person(?s) :preφ ^

person(?r) ^ in(?r; Iran) ^ package(?p)

^

weight(?p; ?w) ^ maxWeight(?w;

heavy):

(out(?o) :?price ?o, : e ⇔∀ffφ

shipmentOrder(?o; ?p) ^ sender(?p;

?s) ^ receiver(?p; ?r) ^ costs(?o;

?price)).

ontologyshipment &location :Ω

?w}?p,?r,{?s, : IN

asia) in(?s, ^ person(?s) :preφ
^ person(?r) ^in(?r;Asia)

^ package(?p) ^ weight(?p;

?w)^ maxWeight(?w; heavy):

 out(?o) :?price ?o, : e ⇔∀ffφ

 shipmentOrder(?o; ?p) ^

sender(?p; ?s) ^ receiver(?p;

?r) ^ costs(?o; ?price)).

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 309

Semantic Matchmaking
The matchmaking techniques for Web service discovery are

defined on the basis of the functional descriptions explained
above. We consider a Web service W to be usable for a goal
template G if there exists at least one execution of W that is

also a solution for G, i.e.

{ } { }
WGif ττττ �∈∃ | . We ex-

press the usability of W for G in terms of matching degrees as
defined in Table 2. Four degrees {exact, plug-in, subsume, in-
tersect} denote different situations wherein W is usable for
solving G; the disjoint degree denotes that this is not given. We
always use the highest possible degree as it holds that:

DisjointIntersect)4(

Intersectsubsume)3(

Intersectplugin)2(

exactsubsumeplugin)1(

⇔¬

�

�

⇔∧

Table�2

Meaning Definition Denotation

wG }{}{ ττττ ∈⇔∈

DwDg φφβ ⇔∀=Ω .|

Exact(Dg ,DW)

wG }{}{ ττττ ∈�∈

DwDg φφβ �∀=Ω .|

Plugin (Dg ,DW)

wG }{}{ ττττ ∈⇐∈

DwDg φφβ ⇐∀=Ω .|

Subsume(Dg ,DW)

there is aτ such that

wG AND }{}{ ττττ ∈∈

DwDg φφβ ∧∃=Ω .|

Intersect (Dg ,DW)

there is noτ such that

G AND }{}{ ττττ ∈∈

DwDg φφβ ∧¬∃=Ω .|

Disjoint(Dg ,DW)

Analogously, we consider a Web service W to be usable for

a goal instance GI (G) if W can provide a solution for GI (G)

when it is invoked with the input binding β defined in GI (G).

Formally, this is given if union of the formulae

[] []{ }ββ φφ WG DD
,�Ω is satisfying. This means that under con-

sideration of the domain knowledge Ω and under the input

binding β defined in GI(G) there must be a � -interpretation

that represents a solution for the corresponding goal template G
as well as a possible execution of the Web service W. Howev-
er, we can simplify the determination of the usability of W for
GI(G) on the basis of the usability degree of W for the corres-
ponding goal template G as follows.

Definition 1: Let GI(G) = (G,
β

) be a goal instance with
GI(G) |= G. Let W be a Web service, and let DW be a func-
tional description such that W |= DW.

W is usable for solving GI(G) if and only if:
(i) Exact (DG, DW) or
(ii) Plug-in (DG, DW) or

(iii) Subsume (DG, DW) and is satisfying, or

(iv) Intersect (DG, DW) and

[] []
�

D

�

D WG ��� ∧∧ is satisfying.

This states that only those Web services that are usable for
the corresponding goal template G are potentially usable for the
goal instance GI(G). If a Web service W is usable for G under
the exact or plug-in degree, then it is also usable for any goal

would not realizable, and there would not be any solution for a goal. The full

model further considers dynamic symbols that are changed during executions.

instance of G because { } () { } { }
WGGGI τττ ⊆⊆ . Under the

subsume degree, all executions of W are solutions of G but not
vice versa. Table 1 above is an example for this.

III. SEMANTIC DISCOVERY CACHING

We now turn towards the caching mechanism for Web ser-
vice discovery. Working on the formal model explained above,
the aim is to improve the computational re-liability of Web
service discovery for goal instances that is performed at run-
time. We commence with the design principles, then provide
the formal definition, and finally explain the optimization for
the runtime discovery process.

Figure 2.Example for cache graph

A. Overview

The idea is to reduce the search space and minimize the ne-
cessary matchmaking operations for Web service discovery by
exploiting the formal relationships between goal templates,
goal instances, and Web services. The central element for this
is the SDC graph that organizes goal templates in a subsump-
tion hierarchy with respect to their semantic similarity, and
captures the minimal knowledge on the functional usability of
the available Web services for the goal templates.

Two goal templates Gi and Gj are considered to be similar
if they have at least one common solution. Then, mostly the
same Web services are usable for them. We express this in
terms of similarity degrees d(Gi;Gj) that denote the matching
degree between the functional descriptions DGi and DGj . For-
mally, these degrees are defined analog to Table 2 (cf. Section
2.2). In order to enable efficient search, we define the SDC
graph such that the only occurring similarity degree is subsume
(Gi,Gj). If this is given, then (1) the solutions for the child Gj
are a subset of those for the parent Gi, and thus (2) the Web
services that are usable for Gj are a subset of those usable for
Gi.

In consequence, the SDC graph is a directed acyclic graph
that consists of two layers. The upper one is the goal graph that
defines the subsumption hierarchy of goal templates by di-
rected arcs. The lower layer is the usability cache that expli-
cates the usability of each available Web service W for every
goal template G by directed arcs that are annotated with the
usability degree d(G;W). The discovery operations use this
knowledge structure by inference rules of the form

() () ()W,GdW,GdG,Gd jiji �∧
 that result from the

formal definitions. Figure 2 illustrates the SDC graph for our
running example along with the most relevant inference rules.
There are three goal templates: G1 for package shipment in
Asia, G2 for China, and G3 for Iran. Their similarity degrees
are subsume (G1, G2) and subsume (G1, G3), which is expli-
cated in the goal graph. Consider some Web services, e.g. W1

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 310

for package shipment in Asia, W2 in the whole world, W3 in
the Middle east, and W4 in the Common wealth. Their usability
degree for each goal template is explicated in the usability
cache, whereby redundant arcs are omitted. We shall explain
the creation of the SDC graph as well as its usage for optimiz-
ing the discovery process below.

B. Definition

The following provides the formal definition of the SDC
graph and explains the algorithms for ensuring that the proper-
ties are maintained at all times.

Definition 2: Let d (Gi, Gj) denote the similarity degree of
goal templates Gi and Gj, and let d (G, W) denote the usability
degree of a Web service W for a goal template G. Given a set G
of goal templates and a set W of Web services, the SDC graph
is a directed acyclic graph ()usesimWg EE,VV �� such that:

(i) I

g gg:V �= is the set of inner vertices where:

- { }Gn,...,Gg 1= are the goal templates; and

- (){ }ji

I

jiji

II GGG;IntersectG,Gdg,G,G|Gg �==∈= is

the set of intersected goal templates from G
(ii) { }m1W W,...,WV = is the set of leaf vertices

representing Web services
(iii) (){ }gjijisim VG,G|G,GE ∈= is the set of directed

arcs where:- d(Gi;Gj) = subsume; and
- Not ex-

ists () () SubsumeG,GdSubsume,GG,d ij == .

(iv) (){ }
Wguse VW,VG|WG,:E ∈∈= is set of di-

rected arcs where:
- ()∈WG,d {exact; plug-in; subsume; intersect}; and

- Not exists
gi VG ∈ s.t. d (Gi, G) = sub-

sume, () { }pluginexact,W,Gd i ∈ .

This defines the structure of a SDC graph as outlined
above. Two refinements are necessary to obtain this from an
initial set of goal templates and Web services. The first one
ensures that the only similarity degree that occurs in the SDC
graph is subsume (Gi, Gj), cf. clause (iii). This denotes that Gj

is a functional specialization of Gi such that{ } { }
ij GG ττ ⊂ . In

consequence, only those Web services that are usable for Gi

can be usable for Gj because if { } { } φττ =WG
j
� then also

{ } { } φττ =WG i
� . With this as its constituting element, the

SDC graph provides an index structure for efficient search of
goal templates and Web services as explained above. The other
possible similarity degrees are handled as follows: if exact (Gi,
Gj), only one goal template is kept while the other one is re-
dundant; if plug-in(Gi , Gj) then we store the opponent arc (Gj
, Gi). If disjoint (Gi, Gj), then both are kept as disconnected
nodes in the SDC graph. Effectively, each of its connected sub
graphs covers a problem domain, e.g. one for the shipment sce-
nario and another one for flight ticketing.

The only critical similarity degree is intersect (Gi, Gj); de-
noting that Gi and Gj have a common solution but there are
also exclusive solutions for each. This can cause cycles in the
SDC graph which hamper its search properties. To avoid this,
we create an intersection goal template GI (Gi, Gj) whose solu-
tions are exactly those that are common to Gi and Gj , cf.
clause (i). Formally, GI is defined as the conjunction of the
functional descriptions of the original goal templates, i.e.

() { } () { } { }
jii

I
jG

iGjiG

GGGj,GG

DDG,GID
������ �=→∧=

Because of this, it holds

that

()() ()()ji

I

jji

I

i G,GG,GSubsume,G,GG,GSubsume T

hus, GI becomes a child node of both Gi and Gj in the goal
graph. This is applied for every occurring intersects similarity
degree so that eventually all similar goal templates are orga-
nized in a subsumption hierarchy and no cycles occur in the
SDC graph. Intersection goal templates are only used as logical
constructs; their functional descriptions do not have to be mate-
rialized. The second refinement ensures the minimalist of the
usability cache, cf. clause (iv). For optimizing the discovery
operations, we must know the usability degree of every Web
service for each goal template. However, in order to avoid re-
dundancy, we omit arcs for which the precise usability degree
can be inferred from

The SDC graph. It holds that if subsume (Gi, Gj), then the
usability degree of a Web service W for the child Gj is always
plug-in if W is usable for the parent Gi under the degrees exact

or plug-in because { } { } { }
ji GGW τττ ⊃⊇ . Thus, the arc (Gj,

W) is not explicated in the SDC graph. In the above example,
the Web services W1 and W2 are usable under the plug-in de-
gree for both G2 and G3; this can be inferred from the usability
cache arcs of G1. Therewith, Euse is the minimal set of arcs that
are necessary to explicate the usability degrees of the available
Web services for each goal template.

In our implementation, the creation of a SDC graph is rea-
lized by the subsequent addition of goal templates. Applying
the refinements explained above, a new goal template is first
inserted at the right position in the goal graph and then the usa-
bility cache is created for it. The removal or modifications of
goal templates are manual maintenance operations; respective
algorithms are ensuring that the properties of the SDC graph
are maintained. Analogous algorithms are provided for the ad-
dition, removal, and modification of Web services. These are
automatically triggered by changes in the Web service reposito-
ry.2

Runtime Discovery Optimization: We now explain the
usage of the SDC graph for optimizing the runtime discovery
process, i.e. for finding a Web service that is usable for solving
a goal instance. We consider this as the most frequent operation
in real-world SOA applications, while changes on goal tem-
plates and Web services are significantly less frequent main-
tenance operations. The optimization is achieved by (1) reduc-
ing the search space as only the Web services that are usable
the corresponding goal template need to be inspected, and (2)
minimizing the number of necessary matchmaking operations
by first inspecting Web services for which no matchmaking is
required at runtime. Listing 1 illustrates the algorithm for this.

input: GI(G);

if (! consistentInstantiation (GI(G))) then fail ;

if (lookup(G)) then return W;

while (subsume(G,G') and consistentInstantiation

(GI(G'))) do { replace (G,G');

if (lookup(G')) then return W; }

 if (otherWS(G)) then return W;

else fail ;

List 1
The input is a goal instance () ()β,GGGI = for which a

usable Web service shall be found. At first, we need to ensure

2 The SDC prototype is open source software available from the SDC home-

page at members.deri.at/~michaels/software/sdc/. It is realized as a discov-

ery component in the WSMX system (the WSMO reference implementa-

tion, www.wsmx.org). We use vampire for matchmaking, a FOL automated

theorem prover.

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 311

that this is a consistent instantiation of its corresponding goal
template G; if this is not given, a usable Web service cannot be
found. Then, we try to find a usable Web service by lookup.
This searches in the SDC graph for a Web service W that is
usable for G under the exact or the plug-in degree; this W is
usable for solving GI(G) without the need of matchmaking at
runtime (cf. Definition 1, Section 2.2). If this is successful, W
is returned and the discovery is completed successfully. Other-
wise, we continue with refining the goal instance in order to
reduce the search space. For this, we successively replace the
corresponding goal template G by the child node G' for which
the goal instance still is a consistent instantiation.

In the example from Figure 2, let GI (G1) be a goal instance
for shipping a package from Shiraz to Tehran that instantiates
G1 for package shipment within Asia. This is also a proper
instantiation of G3 for shipment within Germany; hence, we
refine the goal instance to GI(G3). In the SDC Graph, all child-
ren of G are disjoint - those for which there is no intersection
goal template - so that there can only be one G' with sub-
sume(G , G') and GI(G)|= G'. If there is an intersection goal
template GI and GI(G) |= GI , this is found by following the
path via either of its parents. We thus can search downwards in
the goal graph until finding the lowest possible G': for this, the
number of usable Web services is minimal. In each refinement
step we invoke the lookup procedure because the probability of
success is the higher the lower G' is allocated in the goal graph.
As the last option for finding a usable Web service, we inspect
those ones that are usable for the (possibly refined) correspond-
ing goal template under the degrees subsume and intersect; this
requires matchmaking at runtime (cf. Definition 1). If there are
no web services, the Smart Agent will be activated.

IV. SMART AGENTS

We use three following agents that their each operation will
be described:

• Management Agent

• Sender Agent

• Ranking agent
Management agent is responsible for managing the message

sending and ranking the services and this agent also assumes
the responsibility for control issues. The control issues are as
follow:

Activating the sender and ranking agents
Discharging the sender agent from the cycle of detection

process during the running time and its correspondent ranking
agent in case of Timeout of sending and receiving a message

Selecting an appropriate service with high ranking among
those services which are received ranking agents.

The sender agent is led to a service request from providers
and this message will be broadcasted to all service providers
via SOAP protocol with XML format. Then, each provider
receives the message which is sent by our system through Lis-
tener section and it returns the relevant WSDL. Ranking agents
are responsible for receiving and ranking the services WSDLs
and these agents rank their services according to quality.

The ranking agents use three components of service quality
as follow:

Services security
Responding time
Secure sending of messages
The advantage of this conformity is that we can find the

services using agents which are made when the SDC graph had
been created. In fact, this section will be placed between the
SDC graph and Prover which are already used before forming
the target graph and If SDC couldn’t find the requested service,
so agents will be activated in order to detect the considered

service during the running time. However, even if the service
wouldn’t be detected in this stage, the considered service will
be no longer available. We selected the agents according to
BDI agents and Jadax (6) is used as a class in eclips in order to
change and use them, thus it is easily applied along with
WSMO which is used in eclips.

V. EVALUATIONS

In order to evaluate the performance gain achievable with
the SDC technique, we have compared the prototype imple-
mentation with a not-optimized discovery engine for goal in-
stances that applies the same matchmaking techniques. The
following explains the test set-up and methodology, summariz-
es the results, and discusses the impact of our observations.

A. Methodology

The aim of this evaluation is to quantify the effect of the
SDC technique on the duration of realistic discovery tasks over
larger sets of available Web services that can be expected in
real-world settings. We therefore compare the SDC-enabled
runtime discovery with a naive discovery engine for goal in-
stances. We will discuss the relationship to other optimization
techniques in Section 5.

For the comparison, we use the original data set from the
Stanford SWS challenge shipment scenario that already served
as the running example above. Based on real-world services,
this challenge defines five Web services for package shipment
from the USA to different destination countries, and several
examples of client requests. We map this to our framework
such that goal templates are generic objective descriptions for
package shipment, and the individual requests are described as
goal instances. The formal functional descriptions of goals and
Web services are analog to Table 1, cf. Section 2.1. The root
goal template of the resulting SDC graph describes the objec-
tive of shipping a package of any weight from and to anywhere
in the world. The more detailed levels of the goal graph are
concerned with shipment between continents, the next levels
between countries, and the lowest levels differentiate the
weight classes. At the top of the goal graph, the most common
usability degree for the Web services is subsume; this changes
to plug-in at the lower levels. On this basis, we define ten goal
instances for which a usable Web service is to be found. These
are modeled such that each part of the SDC-enabled runtime
discovery algorithm is covered (cf. Section 3.3). The compari-
son engine is a naive runtime discoverer that does not apply
any optimization techniques. It retrieves the available Web
services in a random order, and performs the basic matchmak-
ing to determine their usability for a goal instance as defined in
Section 2.2. It uses the same matchmaking techniques and in-
frastructure as the SDC-enabled engine. For comparing the
behavior of the engines, we perform Web service discovery for
each goal instance with different numbers of available Web
services. Among these are always the five Web services de-
fined in the scenario that are potentially usable for the tested
goal instance; all others are not.

B. Results

For the analysis, each comparison test has been run 50
times and the results are prepared in the following statistical

standard notations: the arithmetic mean
µ

 as the average val-

ue, the median x that denotes the value in the middle of the 50

test runs, and the standard deviation σ as a measurement for
the value spread among the test runs. Table 3 and 4 shows a
fragment of the augmented data of all test runs for all ten goal
instances.

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 312

Table 3 Our Approach

Service

no
Average Median Min Max Variance

Standard

Division
Covariance

10 0.281165 0.2734 0.2559 0.4563 1562.565 0.032998 11.74%

20 0.29307 0.27885 0.2574 0.9346 48644.89 0.097271 33.19%

50 0.284648 0.27885 0.2575 0.4595 1568.855 0.03356 11.79%

100 0.287544 0.28125 0.2651 0.4533 1489.189 0.033145 11.53%

200 0.290118 0.2815 0.2636 0.4359 1759.133 0.03339 11.51%

500 0.29223 0.2859 0.2652 0.4922 2384.443 0.039231 13.42%

1000 0.296686 0.2875 0.2651 0.539 2795.679 0.043867 14.79%

1500 0.301862 0.2906 0.2717 0.594 4701.46 0.052347 17.34%

2000 0.306008 0.2938 0.2731 0.5954 4376.717 0.055162 18.03%

Table�4 Non-Optimized

From this we can observe the following differences be-

tween the compared engines with respect to the three quality
criteria for reliability: the SDC-enabled discovery is in average
faster than the naive engine, even for smaller numbers of Web
services (efficiency); the time required by the SDC-engine is
independent of the number of available Web services while it
grows proportionally for the naive engine (scalability); over
several invocations, the SDC-engine varies a lot less than the
naive engine (stability). The high variation of the naive engine
results from the randomized order under which the available
Web services are examined. In this particular use case, the SDC
optimization is mainly achieved by the pre-filtering via goal
templates; the refinement step in the discovery algorithm re-
veals its potential when there are more usable Web services.
This indicates that the SDC technique helps to satisfy the re-
quirements for using a Web service discovery engine as a relia-
ble component in large SOA systems. Future-oriented works
for Web service composition or business process management
envision that the actual Web services for execution are dynami-
cally discovered at runtime in order to provide better flexibility
and allow compensation (e.g. [19,8]). Considering that compo-
sitions or processes can be complex and may consist of several
Web services, the absolute overhead and the predictability of
the discovery engine becomes a pre-requisite for realizing such
technologies.

VI. RELATED WORKS

Although there is a wealth of work on Semantic Web ser-
vices and semantically enabled Web service discovery, we are
not aware of any work that addresses the performance chal-
lenge for discovery in a similar way. The following outlines the
foundations of our approach and positions it within related
works. The concept of goals as an abstraction layer for facilitat-
ing problem-oriented client-system interaction has initially
been developed in AI technologies like BDI agents and cogni-
tive architectures. Inspired by the works on UPML [6], our
approach has been developed in the spirit of the WSMO
framework that promotes a goal-driven approach for Semantic
Web services [5], and the IRS system that provides a goal-
based broker for Web service usage [2]. We have integrated
these approaches, and extended them with a sufficiently rich
formalization and the caching mechanism for Web service dis-
covery.

A. Discovery and Semantic Matchmaking

This has been subject to many research works that provide
valuable insights on several aspects, e.g. on the architectural
allocation in SWS systems [15], the quality criteria of discov-
ery [13,9], and semantic matchmaking for different logical lan-
guages [11,14,10]. Our contribution towards this end is the
two-phase Web service discovery with precise formal seman-
tics and adequate matchmaking techniques ([17], cf. Section 2).

B. Web Service Clustering

 Other, not goal-based approaches aim at reducing the
search space for discovery by indexing Web service reposito-
ries. Keyword-based categorization as already supported by
UDDI is imprecise in comparison to the SDC graph: it cannot
be ensured that the classification scheme properly reflects the
functionalities provided by Web services. More sophisticated
solutions perform clustering on the basis of formal descriptions.
E.g. [4] creates a search tree on based so-called interval con-
straints that describe Web services. These are significantly less
expressive than our functional descriptions. Besides, although a
logarithmic search time may be achieved (if the tree is ba-
lanced), still matchmaking is required for each new incoming
request. The SDC technique can detect usable Web services
without invoking a matchmaker.

C. Caching

Caching techniques are a well-established means for per-
formance optimization applied in several areas of computing,
among others also for increasing the efficiency of reasoning
techniques (e.g. [1, 3]). Respective studies show that caching
can achieve the highest efficiency increase if there are many
similar requests [7]. This complies with the design of our ap-
proach: the SDC graph provides the cache structure for Web
service discovery, and the more similar goals and Web services
exists; the higher is the achievable optimization.

VII. CONCLUSIONS

This paper has presented a novel approach for enhancing
the computational performance of Web service discovery by
applying the concept of caching. We capture the minimal
knowledge on the functional usability of available Web servic-
es for goal templates as generic, formal objective descriptions.
At runtime, a concrete client request is formulated as a goal
instances that instantiates a goal template with concrete inputs.
The captured knowledge is used for optimizing the detection of
usable Web services. The approach is based on a profound
formal model for semantically enabled discovery. An evalua-

Service

no
Average Median Min Max Variance

Stan-

dard

Division

Cova-

riance

10 0.413052 0.3922 0.1544 0.9438 49210.51 0.213582 51.71%

20 0.815156 0.733 0.159 2.3708 292723.9 0.51723 63.45%

50 2.000464 1.79795 0.1888 5.054 1759017 1.29219 64.59%

100 3.962612 3.67855 0.253 10.4883 7027879 2.554986 64.48%

200 7.60848 6.6697 0.3484 19.5459 26774771 5.047952 66.35%

500 18.3343
15.6114

5
0.7014 51.321 1.87E+08 13.26301 72.34%

1000 37.69667
33.2214

5
2.1126

103.742

7
7.26E+08 26.27577 69.70%

1500 53.90973
45.1996

5
1.4599

148.776

2
1.63E+09 39.26856 72.84%

2000 72.96355
65.5561

5
2.3656

192.970

2
2.9E+09 52.13448 71.45%

Kambiz Fakhr et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 307-313

© 2010, IJARCS All Rights Reserved 313

tion with real-world data shows that our technique can help in
the realization of scalable and reliable automated discovery
engines, which becomes important for their employment as a
heavily used component in larger, semantically enabled SOA
systems. For the future, we plan to adopt the model to other
specification languages and further integrate the caching me-
chanism into Semantic Web services environments.

VIII. REFERENCES

[1] O. L. Astrachan and M. E. Stickel. Caching and
Lemmaizing in Model Elimination Theorem Provers. In
Proc. of the 11th International Conference on Automated
Deduction (CADE-11), 1992.

[2] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B.
Norton, V. Tanasescu, and C. Pedrinaci. IRS-III { A
Broker for Semantic Web Services based Applications. In
Proc. of the 5th International Semantic Web Conference
(ISWC 2006), Athens (GA), USA, 2006.

[3] R. Clayton, J. G. Cleary, B. Pfahringer, and M. Utting.
Tabling Structures for Bottom-Up Logic Programming. In
Proc. of 12th International Workshop on Logic Based
Program Synthesis and Tranformation, Madrid, Spain,
2002.

[4] 4Constantinescu, W. Binder, and B. Faltings. Flexible and
Enceinte Matchmaking and Ranking in Service
Directories. In Proc. of the 3rd International Conference
on Web Services (ICWS 2005), Florida, USA, 2005.

[5] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M.
Stollberg, D. Roman, and J. Domigue. Enabling Semantic
Web Services. The Web Service Modeling Ontology.
Springer, Berlin, Heidelberg, 2006.

[6] D. Fensel et al. The Unified Problem Solving Method
Development Language UPML. Knowledge and
Information Systems Journal (KAIS), 5(1), 2003.

[7] P. Godfrey and J. Gryz. Semantic Query Caching for
Heterogeneous Databases. In Proc. of 4th Knowledge
Representation Meets Databases Workshop (KRDB) at
VLDB'97, Athens, Greece, 1997

[8] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D.
Fensel. Semantic Business Process Management: A
Vision Towards Using Semantic Web Services for
Business Process Management. In Proc. of the IEEE
ICEBE 2005, Beijing, China, 2005.

[9] U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic
Web Service Discovery in the WSMO Framework. In J.
Cardoses, editor, Semantic Web: Theory, Tools and
Applications. Idea Publishing Group, 2006.

[10] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H.
Lausen, and D. Fensel. A Logical Framework for Web
Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World
of Business Applications, Hiroshima, Japan, 2004.

[11] L. Li and I. Horrocks. A Software Framework for
Matchmaking based on Semantic Web Technology. In
Proceedings of the 12th International Conference on the
World Wide Web, Budapest, Hungary, 2003.

[12] H. Lu. Semantic Web Services Discovery and Ranking. In
Proc. of the ACM International Conference on Web
Intelligence (WI 2005), Compiegne, France, 2005.

[13] T. Di Noia, E. Di Sciascio, F. Donini, and M. Mongiello.
A System for Principled Matchmaking in an Electronic
Marketplace. In Proc. of the 12th International Conference
on the World Wide Web (WWW'03), Budapest, Hungary,
2003.

[14] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In Proc.
of the 1st International Semantic Web Conference,
Sardinia, Italy, 2002.

[15] C. Preist. A Conceptual Architecture for Semantic Web
Services. In Proc. of the 2nd International Semantic Web
Conference (ISWC 2004), 2004.

[16] M. Stollberg and Martin Hepp. Semantic Discovery
Caching: Prototype & Use Case Evaluation. Technical
Report DERI-2007-03-27, DERI, 2007.

[17] M. Stollberg, U. Keller, H. Lausen, and S. Heymans.
Two-phase Web Service Discovery based on Rich
Functional Descriptions. In Proc. 4th European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria, 2007.

[18] M. Stollberg and B. Norton. A Refined Goal Model for
Semantic Web Services. In Proc. of the 2nd International
Conference on Internet and Web Applications and
Services (ICIW 2007), Mauritius, 2007.

[19] P. Traverso and M. Pistore. Automatic Composition of
Semantic Web Services into Executable Processes. In
Proc. 3rd International Semantic Web Conference (ISWC
2004), Hiroshima, Japan, 2004.

[20] L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-Based
Service Selection and Ranking with Trust and Reputation
Management. In Proc. of the OTM Confederated
International Conferences CoopIS, DOA, and ODBASE
2005, Cyprus, 2005.

[21] Co-Developers. Web Services Dynamic Discovery (ws-
Discovery) . Microsoft Corporation, Inc. October 2004 .

